skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Power Efficiency Metric for Comparing Energy Consumption in Future Wireless Networks in the Millimeter Wave and Terahertz bands
Future wireless cellular networks will utilize millimeter- wave and sub-THz frequencies and deploy small-cell base stations to achieve data rates on the order of hundreds of gigabits per second per user. The move to sub-THz frequencies will require attention to sustainability and reduction of power whenever possible to reduce the carbon footprint while maintaining adequate battery life for the massive number of resource-constrained devices to be deployed. This article analyzes power consumption of future wireless networks using a new metric, a figure of merit called the power waste factor (W), which shows promise for the study and development of “green G” — green technology for future wireless networks. Using W, power efficiency can be considered by quantifying the power wasted by all devices on a signal path in a cascade. We then show that the consumption efficiency factor (CEF), defined as the ratio of the maximum data rate achieved to the total power consumed, is a novel and powerful measure of power efficiency which shows that less energy per bit is expended as the cell size shrinks and carrier frequency and channel bandwidth increase. Our findings offer a standard approach to calculating and comparing power consumption and energy efficiency.  more » « less
Award ID(s):
1909206
PAR ID:
10384670
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Wireless Communications
ISSN:
1536-1284
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Green wireless networks Wake-up radio Energy harvesting Routing Markov decision process Reinforcement learning 1. Introduction With 14.2 billions of connected things in 2019, over 41.6 billions expected by 2025, and a total spending on endpoints and services that will reach well over $1.1 trillion by the end of 2026, the Internet of Things (IoT) is poised to have a transformative impact on the way we live and on the way we work [1–3]. The vision of this ‘‘connected continuum’’ of objects and people, however, comes with a wide variety of challenges, especially for those IoT networks whose devices rely on some forms of depletable energy support. This has prompted research on hardware and software solutions aimed at decreasing the depen- dence of devices from ‘‘pre-packaged’’ energy provision (e.g., batteries), leading to devices capable of harvesting energy from the environment, and to networks – often called green wireless networks – whose lifetime is virtually infinite. Despite the promising advances of energy harvesting technologies, IoT devices are still doomed to run out of energy due to their inherent constraints on resources such as storage, processing and communica- tion, whose energy requirements often exceed what harvesting can provide. The communication circuitry of prevailing radio technology, especially, consumes relevant amount of energy even when in idle state, i.e., even when no transmissions or receptions occur. Even duty cycling, namely, operating with the radio in low energy consumption ∗ Corresponding author. E-mail address: koutsandria@di.uniroma1.it (G. Koutsandria). https://doi.org/10.1016/j.comcom.2020.05.046 (sleep) mode for pre-set amounts of time, has been shown to only mildly alleviate the problem of making IoT devices durable [4]. An effective answer to eliminate all possible forms of energy consumption that are not directly related to communication (e.g., idle listening) is provided by ultra low power radio triggering techniques, also known as wake-up radios [5,6]. Wake-up radio-based networks allow devices to remain in sleep mode by turning off their main radio when no communication is taking place. Devices continuously listen for a trigger on their wake-up radio, namely, for a wake-up sequence, to activate their main radio and participate to communication tasks. Therefore, devices wake up and turn their main radio on only when data communication is requested by a neighboring device. Further energy savings can be obtained by restricting the number of neighboring devices that wake up when triggered. This is obtained by allowing devices to wake up only when they receive specific wake-up sequences, which correspond to particular protocol requirements, including distance from the destina- tion, current energy status, residual energy, etc. This form of selective awakenings is called semantic addressing [7]. Use of low-power wake-up radio with semantic addressing has been shown to remarkably reduce the dominating energy costs of communication and idle listening of traditional radio networking [7–12]. This paper contributes to the research on enabling green wireless networks for long lasting IoT applications. Specifically, we introduce a ABSTRACT This paper presents G-WHARP, for Green Wake-up and HARvesting-based energy-Predictive forwarding, a wake-up radio-based forwarding strategy for wireless networks equipped with energy harvesting capabilities (green wireless networks). Following a learning-based approach, G-WHARP blends energy harvesting and wake-up radio technology to maximize energy efficiency and obtain superior network performance. Nodes autonomously decide on their forwarding availability based on a Markov Decision Process (MDP) that takes into account a variety of energy-related aspects, including the currently available energy and that harvestable in the foreseeable future. Solution of the MDP is provided by a computationally light heuristic based on a simple threshold policy, thus obtaining further computational energy savings. The performance of G-WHARP is evaluated via GreenCastalia simulations, where we accurately model wake-up radios, harvestable energy, and the computational power needed to solve the MDP. Key network and system parameters are varied, including the source of harvestable energy, the network density, wake-up radio data rate and data traffic. We also compare the performance of G-WHARP to that of two state-of-the-art data forwarding strategies, namely GreenRoutes and CTP-WUR. Results show that G-WHARP limits energy expenditures while achieving low end-to-end latency and high packet delivery ratio. Particularly, it consumes up to 34% and 59% less energy than CTP-WUR and GreenRoutes, respectively. 
    more » « less
  2. Abstract Future generations of wireless systems are expected to combine the use of high-frequency bands (the terahertz range) with smart interconnected devices (the Internet of Things). To realize this ambitious merging, systems will require antennas that can be mounted on nonplanar objects while generating highly directional beams. Here, we study conformal THz leaky-wave antennas at THz frequencies. We find a rich set of behaviors accessible at THz frequencies dictated by the interplay among the geometrical parameters and the wavelength. We develop simple models to describe the relevant physics, which we verify by an experimental implementation. We also demonstrate data transmission using a conformal THz antenna that can generate multiple high-gain beams with low bit error rates for increased coverage of THz wireless links. 
    more » « less
  3. We describe a general design for a compact frequency comb-based optical time transfer and ranging node with a volume of 14L, a mass of 10 kg, and a power consumption of 46 W. We assess the residual noise from the comb-based system by making both ranging and time transfer measurements using these compact nodes over a 4.4 km free-space testbed. We demonstrate that this node design has the potential to support sub-femtosecond clock comparisons and sub-micron range measurements at averaging intervals of 1 s with a mean received power of 20 nW. This is more than sufficient to support future space-based distributed coherent sensing at observing frequencies beyond 1 THz. 
    more » « less
  4. Sub-Terahertz (THz) frequencies between 100 GHz and 300 GHz are being considered as a key enabler for the sixthgeneration (6G) wireless communications due to the vast amounts of unused spectrum. The 3rd Generation Partnership Project (3GPP) included the indoor industrial environments as a scenario of interest since Release 15. This paper presents recent sub- THz channel measurements using directional horn antennas of 27 dBi gain at 142 GHz in a factory building, which hosts equipment manufacturing startups. Directional measurements with copolarized and cross-polarized antenna configurations were conducted over distances from 6 to 40 meters. Omnidirectional and directional path loss with two antenna polarization configurations produce the gross cross-polarization discrimination (XPD) with a mean of 27.7 dB, which suggests that dual-polarized antenna arrays can provide good multiplexing gain for sub-THz wireless systems. The measured power delay profile and power angular spectrum show the maximum root mean square (RMS) delay spread of 66.0 nanoseconds and the maximum RMS angular spread of 103.7 degrees using a 30 dB threshold, indicating the factory scenario is a rich-scattering environment due to a massive number of metal structures and objects. This work will facilitate emerging sub-THz applications such as super-resolution sensing and positioning for future smart factories. 
    more » « less
  5. Wireless backscattering has been deemed suitable for various emerging energy-constrained applications given its low-power architectures. Although existing backscatter nodes often operate at sub-6 GHz frequency bands, moving to the sub-THz bands offers significant advantages in scaling low-power connectivity to dense user populations; as concurrent transmissions can be separated in both spectral and spatial domains given the large swath of available bandwidth and laser-shaped beam directionality in this frequency regime. However, the power consumption and complexity of wireless devices increase significantly with frequency. In this paper, we present LeakyScatter, the first backscatter system that enables directional, low-power, and frequency-agile wireless links above 100 GHz. LeakyScatter departs from conventional backscatter designs and introduces a novel architecture that relies on aperture reciprocity in leaky-wave devices. We have fabricated LeakyScatter and evaluated its performance through extensive simulations and over-the-air experiments. Our results demonstrate a scalable wireless link above 100 GHz that is retrodirective and operates at a large bandwidth (tens of GHz) and ultra-low-power (zero power consumed for directional steering and ≤ 1 mW for data modulation). 
    more » « less