skip to main content

Title: A computed tomography ‐based survey of paramedullary diverticula in extant Aves

Avian respiratory systems are comprised of rigid lungs connected to a hierarchically organized network of large, regional air sacs, and small diverticula that branch from them. Paramedullary diverticula are those that rest in contact with the spinal cord, and frequently invade the vertebral canal. Here, we review the historical study of these structures and provide the most diverse survey to date of paramedullary diverticula in Aves, consisting of observations from 29 taxa and 17 major clades. These extensions of the respiratory system are present in nearly all birds included in the study, with the exception of falconiforms, gaviiforms, podicipediforms, and piciforms. When present, they share connections most commonly with the intertransverse and supravertebral diverticula, but also sometimes with diverticula arising directly from the lungs and other small, more posterior diverticula. Additionally, we observed much greater morphological diversity of paramedullary airways than previously known. These diverticula may be present as one to four separate tubes (dorsal, lateral, or ventral to the spinal cord), or as a single large structure that partially or wholly encircles the spinal cord. Across taxa, paramedullary diverticula are largest and most frequently present in the cervical region, becoming smaller and increasingly absent moving posteriorly. Finally, we observe two osteological correlates of paramedullary diverticula (pneumatic foramina and pocked texturing inside the vertebral canal) that can be used to infer the presence of these structures in extinct taxa with similar respiratory systems.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Anatomical Record
Page Range / eLocation ID:
p. 29-50
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rapid activation of resident glia occurs after spinal cord injury. Somewhat later, innate and adaptive immune responses occur with the invasion of peripheral immune cells into the wound site. The activation of resident and peripheral immune cells has been postulated to play harmful as well as beneficial roles in the regenerative process. Mauthner cells, large identifiable neurons located in the hindbrain of most fish and amphibians, provided the opportunity to study the morphological relationship between reactive cells and Mauthner axons (M‐axons) severed by spinal cord crush or by selective axotomy. After crossing in the hindbrain, the M‐axons of adult goldfish,Carassius auratus, extend the length of the spinal cord. Following injury, the M‐axon undergoes retrograde degeneration within its myelin sheath creating an axon‐free zone (proximal dieback zone). Reactive cells invade the wound site, enter the axon‐free dieback zone and are observed in the vicinity of the retracted M‐axon tip as early as 3 hr postinjury. Transmission electron microscopy allowed the detection of microglia/macrophages and granulocytes, some of which appear to be neutrophil‐like, at each of these locations. We believe that this is the first report of the invasion of such cells within the myelin sheath of an identifiable axon in the vertebrate central nervous system (CNS). We speculate that microglia/macrophages and granulocytes that are attracted within a few hours to the damaged M‐axon are part of an inflammatory response that allows phagocytosis of debris and plays a role in the regenerative process. Our results provide the baseline from which to utilize immunohistochemical and genetic approaches to elucidate the role of non‐neuronal cells in the regenerative process of a single axon in the vertebrate CNS.

    more » « less
  2. This paper presents results of an experimental investigation of solute transport in a simplified model of the spinal canal. The work aims to provide increased understanding of the mechanisms responsible for drug dispersion in intrathecal drug delivery (ITDD) procedures. The model consists of an annular channel bounded externally by a rigid transparent tube of circular section, representing the dura mater, and internally by an eccentric cylindrical compliant insert, representing the spinal cord. The tube, closed at one end, is connected to a rigid acrylic reservoir, representing the cranial cavity. The system is filled with water, whose properties are almost identical to those of the cerebrospinal fluid. A programmable peristaltic pump is employed to generate oscillatory motion at frequencies that are representative of those induced by the cardiac and respiratory cycles. Laser induced fluorescence is used to characterize the dispersion of fluorescent dye along the canal and into the cranial cavity for different values of the relevant Womersley number and different eccentricities of the annular section. The present work corroborates experimentally, for the first time, the existence of a steady bulk flow, associated with the mean Lagrangian motion, which plays a key role in the transport of the solute along the spinal canal. The measurements of solute dispersion are found to be in excellent agreement with theoretical predictions obtained using a simplified transport equation derived earlier on the basis of a two-timescale asymptotic analysis. The experimental results underscore the importance of the eccentricity and its variations along the canal and identifies changes in the flow topology associated with differences in the Womersley number, with potential implications in guiding future designs of ITDD protocols. 
    more » « less
  3. Abstract Background

    Tension in the spinal cord is a trademark of tethered cord syndrome. Unfortunately, existing tests cannot quantify tension across the bulk of the cord, making the diagnostic evaluation of stretch ambiguous. A potential non-destructive metric for spinal cord tension is ultrasound-derived shear wave velocity (SWV). The velocity is sensitive to tissue elasticity and boundary conditions including strain. We use the term Ultrasound Tensography to describe the acoustic evaluation of tension with SWV.


    Our solution Tethered cord Assessment with Ultrasound Tensography (TAUT) was utilized in three sub-studies: finite element simulations, a cadaveric benchtop validation, and a neurosurgical case series. The simulation computed SWV for given tensile forces. The cadaveric model with induced tension validated the SWV-tension relationship. Lastly, SWV was measured intraoperatively in patients diagnosed with tethered cords who underwent treatment (spinal column shortening). The surgery alleviates tension by decreasing the vertebral column length.


    Here we observe a strong linear relationship between tension and squared SWV across the preclinical sub-studies. Higher tension induces faster shear waves in the simulation (R2 = 0.984) and cadaveric (R2 = 0.951) models. The SWV decreases in all neurosurgical procedures (p < 0.001). Moreover, TAUT has a c-statistic of 0.962 (0.92-1.00), detecting all tethered cords.


    This study presents a physical, clinical metric of spinal cord tension. Strong agreement among computational, cadaveric, and clinical studies demonstrates the utility of ultrasound-induced SWV for quantitative intraoperative feedback. This technology is positioned to enhance tethered cord diagnosis, treatment, and postoperative monitoring as it differentiates stretched from healthy cords.

    more » « less
  4. Abstract

    Spiders are unique in having a dual respiratory system with book lungs and tracheae, and most araneomorph spiders breathe simultaneously via book lungs and tracheae, or tracheae alone. The respiratory organs of spiders are diverse but relatively conserved within families. The small araneoid spiders of the symphytognathoid clade exhibit a remarkably high diversity of respiratory organs and arrangements, unparalleled by any other group of ecribellate orb weavers. In the present study, we explore and review the diversity of symphytognathoid respiratory organs. Using a phylogenetic comparative approach, we reconstruct the evolution of the respiratory system of symphytognathoids based on the most comprehensive phylogenetic frameworks to date. There are no less than 22 different respiratory system configurations in symphytognathoids. The phylogenetic reconstructions suggest that the anterior tracheal system evolved from fully developed book lungs and, conversely, reduced book lungs have originated independently at least twice from its homologous tracheal conformation. Our hypothesis suggests that structurally similar book lungs might have originated through different processes of tracheal transformation in different families. In symphytognathoids, the posterior tracheal system has either evolved into a highly branched and complex system or it is completely lost. No evident morphological or behavioral features satisfactorily explains the exceptional variation of the symphytognathoid respiratory organs.

    more » « less
  5. Abstract

    We imaged the lungs of five Cuvier's dwarf caiman (Paleosuchus palpebrosus) via computed tomography (CT) and micro‐computed tomography (μCT) and compared these data to the lungs of the American alligator (Alligator mississippiensis). These data demonstrate anatomical commonalities between the lungs ofP. palpebrosusandA. mississippiensis, and a few notable differences. The structural similarities are (a) a proximally narrow, distally widened, hook‐shaped primary bronchus; (b) a cervical ventral bronchus that branches of the primary bronchus and immediately makes a hairpin turn toward the apex of the lung; (c) a sequential series of dorsobronchi arising from the primary bronchus caudal to the cervical ventral bronchus; (d) intraspecifically highly variable medial sequence of secondary airways; (e) sac‐like laterobronchi; and (f) grossly dead‐ended caudal group bronchi in the caudal and ventral aspects of the lung. The primary differences between the two taxa are in the overall number of large bronchi (fewer inP. palpebrosus), and the number of branches that contribute to the cardiac regions. Imaging data of both a live and deceased specimen under varying states (postprandial, fasting, total lung capacity, open to atmosphere) indicate that the caudal margin and position of the lungs shift craniocaudally relative to the vertebral column. These imaging data suggest that the smooth thoracic ceiling may be correlated to visceral movement during ventilation, but this hypothesis warrants validation. These results provide the scaffolding for future comparisons between crocodilians, for generating preliminary reconstructions of the ancestral crocodilian bronchial tree, and establishing new hypotheses of bronchial homology across Archosauria.

    more » « less