Some biological invasions can result in algae blooms in the nearshore of clear lakes. We studied if an invasive crayfish (
Sewage released from lakeside development can reshape ecological communities. Nearshore periphyton can rapidly assimilate sewage‐associated nutrients, leading to increases of filamentous algal abundance, thus altering both food abundance and quality for grazers. In Lake Baikal, a large, ultra‐oligotrophic, remote lake in Siberia, filamentous algal abundance has increased near lakeside developments, and localized sewage input is the suspected cause. These shifts are of particular interest in Lake Baikal, where endemic littoral biodiversity is high, lakeside settlements are mostly small, tourism is relatively high (~1.2 million visitors annually), and settlements are separated by large tracts of undisturbed shoreline, enabling investigation of heterogeneity and gradients of disturbance. We surveyed sites along 40 km of Baikal's southwestern shore for sewage indicators—pharmaceuticals and personal care products (PPCPs) and microplastics—as well as periphyton and macroinvertebrate abundance and indicators of food web structure (stable isotopes and fatty acids). Summed PPCP concentrations were spatially related to lakeside development. As predicted, lakeside development was associated with more filamentous algae and lower abundance of sewage‐sensitive mollusks. Periphyton and macroinvertebrate stable isotopes and essential fatty acids suggested that food web structure otherwise remained similar across sites; yet, the invariance of amphipod fatty acid composition, relative to periphyton, suggested that grazers adjust behavior or metabolism to compensate for different periphyton assemblages. Our results demonstrate that even low levels of human disturbance can result in spatial heterogeneity of nearshore ecological responses, with potential for changing trophic interactions that propagate through the food web.
more » « less- PAR ID:
- 10384724
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 67
- Issue:
- 12
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- p. 2649-2664
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Pacifastacus leniusculus ) modified the biomass and community composition of benthic macroinvertebrates and therefore led to a trophic cascade resulting in increased periphyton biomass, elevated littoral primary productivity, and benthic algae bloom in a lake with remarkable transparency [Crater Lake, Oregon, USA]. After quantifying the changes in the spatial distribution of invasive crayfish over a 13-year period, we compared biomass and community composition of littoral–benthic macroinvertebrates, periphyton biovolume, community composition, nutrient limitation, and the development of benthic algae bloom in locations with high and low crayfish density. In addition, we determined if the alteration in community structure resulted in directional changes to gross primary production and ecosystem respiration. The extent of crayfish distribution along the shoreline of Crater Lake doubled over a 13-year period, leaving less than 20% of the shoreline free from crayfish. At high crayfish density sites, benthic macroinvertebrate biomass was 99% lower, and taxa richness was 50% lower than at low crayfish areas. High crayfish sites show tenfold greater periphyton biovolume, sixfold higher periphyton biomass (chlorophylla ), twofold higher metabolic productivity, and the presence of large filamentous algae (Cladophora sp.). The invasion of crayfish had negative consequences for a lake protected under the management of the USA National Park Service, with direct impacts on many levels of ecological organization. -
Abstract Characterizing spatial and temporal variability of food web dynamics is necessary to predict how wetter and more nutrient‐rich conditions expected with climate change will influence the fate of organic matter within northern peatlands. The goals of this study were to (1) document spatial and temporal variability in the contribution of periphyton to peatland food webs using isotope analysis (13C and15N), and (2) quantify the influence of increased nutrient availability on primary and secondary production across a gradient of rich, moderate, and poor fen peatlands common to the northern boreal biome. We established replicate
m 2plots within each fen located in interior Alaska to quantify periphyton (algae and bacteria) and macroinvertebrate biomass with and without nutrient addition throughout a growing season (May–August). Stable isotope analysis showed that periphyton contributed= 65% of organic matter to the food web over time and across fens compared to = 7% from plants or detritus. The transfer of basal resources was reflected in an increase in herbivore biomass as algal biomass increased over time in all fens, followed by an increase in predatory macroinvertebrates during the latter part of the growing season. Furthermore, all measures of periphyton and macroinvertebrate biomass were enhanced by nutrient addition. These data provide insight into patterns of natural variation within the aquatic food web of boreal peatlands and show that basal resources within this ecosystem, which are generally considered to be “detritus‐based,” are actually driven by periphyton with minimal input from plant detrital pathways. -
null (Ed.)Abstract Nearshore (littoral) habitats of clear lakes with high water quality are increasingly experiencing unexplained proliferations of filamentous algae that grow on submerged surfaces. These filamentous algal blooms (FABs) are sometimes associated with nutrient pollution in groundwater, but complex changes in climate, nutrient transport, lake hydrodynamics, and food web structure may also facilitate this emerging threat to clear lakes. A coordinated effort among members of the public, managers, and scientists is needed to document the occurrence of FABs, to standardize methods for measuring their severity, to adapt existing data collection networks to include nearshore habitats, and to mitigate and reverse this profound structural change in lake ecosystems. Current models of lake eutrophication do not explain this littoral greening. However, a cohesive response to it is essential for protecting some of the world's most valued lakes and the flora, fauna, and ecosystem services they sustain.more » « less
-
Abstract Climate change is expected to alter disturbance regimes and biogeochemical cycles that underlie the structure and function of ecosystems worldwide. In the Arctic, rapid warming is already affecting these processes via changes in precipitation and thawing permafrost. We assessed how anticipated changes in disturbance regimes and nutrient availability may affect an arctic river ecosystem (Kuparuk River, Alaska) by analyzing temporal patterns of biofilm chlorophyll mass and macroinvertebrate community structure and productivity. Our study incorporated an upstream reach (sampled 2001–2012) and a downstream reach (sampled 2011–2012) to which phosphorus (P) was added to simulate increases in nutrient supply that are anticipated as permafrost thaws. Greater hydrologic disturbance during the open‐water season correlated with reduced algal biomass and invertebrate secondary production (range ∼ 2–7 g DM m−2yr−1) in the following spring and summer. Bed disturbing flows also altered macroinvertebrate community structure with distinct “high‐flow” and “base‐flow” assemblages documented. Recovery time was shorter for chlorophyll mass and macroinvertebrate production (∼ 1 yr) than community structure (∼ 3 yr). Experimental P‐addition increased algal biomass and invertebrate production, but also resulted in a third macroinvertebrate assemblage dominated by mobile grazers rather than filter‐feeders. Our results suggest that a decrease in the return interval for bed disturbing floods to < 4 yr will result in persistent changes in macroinvertebrate community structure and fundamental alterations to the food web. These results also demonstrate how arctic river communities may be affected by increases in the magnitude and variability of river discharge and nutrient supplies that are anticipated as the climate warms.
-
Abstract Pelagic copepods often couple the classical and microbial food webs by feeding on microzooplankton (e.g. ciliates) in oligotrophic aquatic systems, and this consumption can trigger trophic cascades within the microbial food web. Consumption of mixotrophic microzooplankton, which are both autotrophic and heterotrophic within the same individual, is of particular interest because of its influence on carbon transfer efficiency within aquatic food webs.
In Lake Baikal, Siberia, it is unknown how carbon from a well‐developed microbial food web present during summer stratification moves into higher trophic levels within the classical food web.
We conducted in situ experiments in August 2015 to test the hypotheses that: (a) the lake's dominant endemic copepod (
Epischura baikalensis ), previously assumed to be an herbivore feeding on diatoms, connects the microbial and classical food webs by ingesting ciliates; and (b) this feeding initiates top‐down effects within the microbial food web.Our results supported these hypotheses.
E. baikalensis individuals consumed on average 101–161 ciliates per day, obtaining 96%–98% of their ingested carbon from ciliates and the remainder from small diatoms. Clearly,E. baikalensis is omnivorous, and it is probably channelling more primary production from both the microbial food web and the classical food web of Lake Baikal to higher trophic levels than any other pelagic consumer.Most ciliates consumed were a mixotrophic oligotrich and such taxa are often abundant in summer in other oligotrophic lakes. Consumption of these mixotrophs is likely to boost substantially the transfer efficiency of biomass to higher trophic levels with potential implications for fish production, but this has seldom been investigated in oligotrophic lakes.
Feeding of
E. baikalensis initiated a three‐link predatory cascade which reduced the abundance of ciliates and elevated growth rates of heterotrophic nanoflagellates but did not affect abundance or growth rates of autotrophic picoplankton. This demonstration of a potential trophic cascade in Lake Baikal indicates that investigations at larger spatial–temporal scales are needed to identify the conditions promoting or precluding trophic cascades in this lake.