Following the 1st release of the
Following the 2nd release of the “Emerging PV reports,” the best achievements in the performance of emerging photovoltaic devices in diverse emerging photovoltaic research subjects are summarized, as reported in peer‐reviewed articles in academic journals since August 2021. Updated graphs, tables, and analyses are provided with several performance parameters, e.g., power conversion efficiency, open‐circuit voltage, short‐circuit current density, fill factor, light utilization efficiency, and stability test energy yield. These parameters are presented as a function of the photovoltaic bandgap energy and the average visible transmittance for each technology and application, and are put into perspective using, e.g., the detailed balance efficiency limit. The 3rd installment of the “Emerging PV reports” extends the scope toward triple junction solar cells.
more » « less- PAR ID:
- 10384877
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy Materials
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract “Emerging photovoltaic (PV) reports” , the best achievements in the performance of emerging photovoltaic devices in diverse emerging photovoltaic research subjects are summarized, as reported in peer‐reviewed articles in academic journals since August 2020. Updated graphs, tables, and analyses are provided with several performance parameters, e.g., power conversion efficiency, open‐circuit voltage, short‐circuit current density, fill factor, light utilization efficiency, and stability test energy yield. These parameters are presented as a function of the photovoltaic bandgap energy and the average visible transmittance for each technology and application and are put into perspective using, e.g., the detailed balance efficiency limit. The 2nd instalment of the“Emerging PV reports” extends the scope toward tandem solar cells and presents the current state‐of‐the‐art in tandem solar cell performance for various material combinations. -
Abstract Emerging photovoltaics (PVs) focus on a variety of applications complementing large scale electricity generation. Organic, dye‐sensitized, and some perovskite solar cells are considered in building integration, greenhouses, wearable, and indoor applications, thereby motivating research on flexible, transparent, semitransparent, and multi‐junction PVs. Nevertheless, it can be very time consuming to find or develop an up‐to‐date overview of the state‐of‐the‐art performance for these systems and applications. Two important resources for recording research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley–Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield is included as an analysis parameter among state‐of‐the‐art emerging PVs.
-
Abstract Sunlight is one of the Earth's clean and sustainable natural energy resources, and extensive studies are conducted on the conversion of solar energy into electricity using photovoltaic (PV) devices. However, single‐junction PV devices cannot break the theoretical efficiency limit known as the Shockley–Queisser limit that is caused by the sub‐bandgap transmission and heat dissipation losses in semiconductors. Solar thermal conversion approaches may provide an alternative way to exceed this limit and enable more efficient use of solar light than that in PV devices. Recently, spectrally or thermally engineered metamaterials have attracted considerable attention for solar energy applications because of their excellent physical properties. The recent research progress in the development of these photothermal and thermoplasmonic metamaterials, along with their promising applications in solar thermophotovoltaics, radiative cooling, and solar desalination, is discussed.
-
Abstract Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (
V oc) of 1.85 V, a short‐circuit photocurrent (J sc) of 11.52 mA cm−2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, withV ocof 1.80 V,J scof 11.07 mA cm−2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved highV ocin the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively. -
Low-cost materials, scalable manufacturing, and high power conversion efficiency are critical enablers for large-scale applications of photovoltaic (PV) cells. Cu 2 ZnSn(S,Se) 4 (CZTSSe) has emerged as a promising PV material due to its low-cost earth-abundant nature and the low toxicity of its constituents. We present a compact and environmentally friendly route for preparing metal sulfide (metals are Cu, Zn, and Sn) nanoparticles (NPs) and optimize their annealing conditions to obtain uniform carbon-free CZTSSe thin films with large grain sizes. Further, the solution-stable binary NP inks synthesized in an aqueous solution with additives are shown to inhibit the formation of secondary phases during annealing. A laboratory-scale PV cell with a Al/AZO/ZnO/CdS/CZTSSe/Mo-glass structure is fabricated without anti-reflective coatings, and a 9.08% efficiency under AM1.5G illumination is demonstrated for the first time. The developed scalable, energy-efficient, and environmentally sustainable NP synthesis approach can enable integration of NP synthesis with emerging large-area deposition and annealing methods for scalable fabrication of CZTSSe PV cells.more » « less