skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Learning physics-consistent particle interactions
Abstract

Interacting particle systems play a key role in science and engineering. Access to the governing particle interaction law is fundamental for a complete understanding of such systems. However, the inherent system complexity keeps the particle interaction hidden in many cases. Machine learning methods have the potential to learn the behavior of interacting particle systems by combining experiments with data analysis methods. However, most existing algorithms focus on learning the kinetics at the particle level. Learning pairwise interaction, e.g., pairwise force or pairwise potential energy, remains an open challenge. Here, we propose an algorithm that adapts the Graph Networks framework, which contains an edge part to learn the pairwise interaction and a node part to model the dynamics at particle level. Different from existing approaches that use neural networks in both parts, we design a deterministic operator in the node part that allows to precisely infer the pairwise interactions that are consistent with underlying physical laws by only being trained to predict the particle acceleration. We test the proposed methodology on multiple datasets and demonstrate that it achieves superior performance in inferring correctly the pairwise interactions while also being consistent with the underlying physics on all the datasets. While the previously proposed approaches are able to be applied as simulators, they fail to infer physically consistent particle interactions that satisfy Newton’s laws. Moreover, the proposed physics-induced graph network for particle interaction also outperforms the other baseline models in terms of generalization ability to larger systems and robustness to significant levels of noise. The developed methodology can support a better understanding and discovery of the underlying particle interaction laws, and hence, guide the design of materials with targeted properties.

 
more » « less
PAR ID:
10384888
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
PNAS Nexus
Volume:
1
Issue:
5
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Complex biological, neuroscience, geoscience and social networks exhibit heterogeneous self-similar higher order topological structures that are usually characterized as being multifractal in nature. However, describing their topological complexity through a compact mathematical description and deciphering their topological governing rules has remained elusive and prevented a comprehensive understanding of networks. To overcome this challenge, we propose a weighted multifractal graph model capable of capturing the underlying generating rules of complex systems and characterizing their node heterogeneity and pairwise interactions. To infer the generating measure with hidden information, we introduce a variational expectation maximization framework. We demonstrate the robustness of the network generator reconstruction as a function of model properties, especially in noisy and partially observed scenarios. The proposed network generator inference framework is able to reproduce network properties, differentiate varying structures in brain networks and chromosomal interactions, and detect topologically associating domain regions in conformation maps of the human genome. 
    more » « less
  2. null (Ed.)
    Using a discrete dynamical system model for a networked social system, we consider the problem of learning a class of local interaction functions in such networks. Our focus is on learning local functions which are based on pairwise disjoint coalitions formed from the neighborhood of each node. Our work considers both active query and PAC learning models. We establish bounds on the number of queries needed to learn the local functions under both models. We also establish a complexity result regarding efficient consistent learners for such functions. Our experimental results on synthetic and real social networks demonstrate how the number of queries depends on the structure of the underlying network and number of coalitions. 
    more » « less
  3. Using a discrete dynamical system model for a networked social system, we consider the problem of learning a class of local interaction functions in such networks. Our focus is on learning local functions which are based on pairwise disjoint coalitions formed from the neighborhood of each node. Our work considers both active query and PAC learning models. We establish bounds on the number of queries needed to learn the local functions under both models.We also establish a complexity result regarding efficient consistent learners for such functions. Our experimental results on synthetic and real social networks demonstrate how the number of queries depends on the structure of the underlying network and number of coalitions. 
    more » « less
  4. null (Ed.)
    Using a discrete dynamical system model for a networked social system, we consider the problem of learning a class of local interaction functions in such networks. Our focus is on learning local functions which are based on pairwise disjoint coalitions formed from the neighborhood of each node. Our work considers both active query and PAC learning models. We establish bounds on the number of queries needed to learn the local functions under both models.We also establish a complexity result regarding efficient consistent learners for such functions. Our experimental results on synthetic and real social networks demonstrate how the number of queries depends on the structure of the underlying network and number of coalitions. 
    more » « less
  5. Multi-graph clustering aims to improve clustering accuracy by leveraging information from different domains, which has been shown to be extremely effective for achieving better clustering results than single graph based clustering algorithms. Despite the previous success, existing multi-graph clustering methods mostly use shallow models, which are incapable to capture the highly non-linear structures and the complex cluster associations in multigraph, thus result in sub-optimal results. Inspired by the powerful representation learning capability of neural networks, in this paper, we propose an end-to-end deep learning model to simultaneously infer cluster assignments and cluster associations in multi-graph. Specifically, we use autoencoding networks to learn node embeddings. Meanwhile, we propose a minimum-entropy based clustering strategy to cluster nodes in the embedding space for each graph. We introduce two regularizers to leverage both within-graph and cross-graph dependencies. An attentive mechanism is further developed to learn cross-graph cluster associations. Through extensive experiments on a variety of datasets, we observe that our method outperforms state-of-the-art baselines by a large margin. 
    more » « less