skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced medium-range order in vapor-deposited germania glasses at elevated temperatures
Glasses are nonequilibrium solids with properties highly dependent on their method of preparation. In vapor-deposited molecular glasses, structural organization could be readily tuned with deposition rate and substrate temperature. Here, we show that the atomic arrangement of strong network-forming GeO 2 glass is modified at medium range (<2 nm) through vapor deposition at elevated temperatures. Raman spectral signatures distinctively show that the population of six-membered GeO 4 rings increases at elevated substrate temperatures. Deposition near the glass transition temperature is more efficient than postgrowth annealing in modifying atomic structure at medium range. The enhanced medium-range organization correlates with reduction of the room temperature internal friction. Identifying the microscopic origin of room temperature internal friction in amorphous oxides is paramount to design the next-generation interference coatings for mirrors of the end test masses of gravitational wave interferometers, in which the room temperature internal friction is a main source of noise limiting their sensitivity.  more » « less
Award ID(s):
2110101
PAR ID:
10384919
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
37
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Brownian thermal noise as a result of mechanical loss in optical coatings will become the dominant source of noise at the most sensitive frequencies of ground-based gravitational-wave detectors. Experiments found, however, that a candidate material, amorphous Ta2O5, is unable to form an ultrastable glass and, consequently, to yield a film with significantly reduced mechanical loss through elevated-temperature deposition alone. X-ray scattering PDF measurements are carried out on films deposited and subsequently annealed at various temperatures. Inverse atomic modeling is used to analyze the short and medium range features in the atomic structure of these films. Furthermore, in silico deposition simulations of Ta2O5 are carried out at various substrate temperatures and an atomic level analysis of the growth at high temperatures is presented. It is observed that upon elevated-temperature deposition, short range features remain identical, whereas medium range order increases. After annealing, however, both the short and medium range orders of films deposited at different substrate temperatures are nearly identical. A discussion on the surface diffusion and glass transition temperatures indicates that future pursuits of ultrastable low-mechanical-loss films through elevated temperature deposition should focus on materials with a high surface mobility, and/or lower glass transition temperatures in the range of achievable deposition temperatueres. 
    more » « less
  2. Physical vapor deposition can prepare organic glasses with high kinetic stability. When heated, these glassy solids slowly transform into supercooled liquid in a process known as rejuvenation. In this study, we anneal vapor-deposited glasses of methyl-m-toluate for 6 h at 0.98Tg to observe rejuvenation using dielectric spectroscopy. Glasses of moderate stability exhibited partial or full rejuvenation in 6 h. For highly stable glasses, prepared at substrate temperatures of 0.85Tg and 0.80Tg, the 6 h annealing time is ∼2% of the estimated transformation time, and no change in the onset temperature for the α relaxation process was observed, as expected. Surprisingly, for these highly stable glasses, annealing resulted in significant increases in the storage component of the dielectric susceptibility, without corresponding increases in the loss component. These changes are interpreted to indicate that short-term annealing rejuvenates a high frequency relaxation (e.g., the boson peak) within the stable glass. We compare these results to computer simulations of the rejuvenation of highly stable glasses generated by using the swap Monte Carlo algorithm. The in silico glasses, in contrast to the experiment, show no evidence of rejuvenation within the stable glass at times shorter than the alpha relaxation process. 
    more » « less
  3. We study the structure of vapor-deposited glasses of five common organic semiconductors as a function of substrate temperature during deposition, using synchrotron X-ray scattering. For deposition at a substrate temperature of ∼0.8 T g (where T g is the glass transition temperature), we find a generic tendency towards “face-on” packing in glasses of anisotropic molecules. At higher substrate temperature however this generic behavior breaks down; glasses of rod-shaped molecules exhibit a more pronounced tendency for end-on packing. Our study provides guidelines to create face-on and end-on packing motifs in organic glasses, which can promote efficient charge transport in OLED and OFET devices respectively. 
    more » « less
  4. null (Ed.)
    By measuring the increments of dielectric capacitance (Δ C ) and dissipation (Δtan  δ ) during physical vapor deposition of a 110 nm film of a molecular glass former, we provide direct evidence of the mobile surface layer that is made responsible for the extraordinary properties of vapor deposited glasses. Depositing at a rate of 0.1 nm s −1 onto a substrate at T dep = 75 K = 0.82 T g , we observe a 2.5 nm thick surface layer with an average relaxation time of 0.1 s, while the glass growing underneath has a high kinetic stability. The level of Δtan  δ continues to decrease for thousands of seconds after terminating the deposition process, indicating a slow aging-like increase in packing density near the surface. At very low deposition temperatures, 32 and 42 K, the surface layer thicknesses and mobilities are reduced, as are the kinetic stabilities. 
    more » « less
  5. Abstract Glasses are generally assumed to be isotropic and there are no literature reports of elastic anisotropy for molecular glasses. However, as glasses formed by physical vapor deposition can be structurally anisotropic, it is of interest to investigate the elastic anisotropy in these materials. Micro‐Brillouin light spectroscopy is used in several experimental geometries to determine the elastic stiffness tensors of three glass films of itraconazole vapor‐deposited at substrate temperatures (Tsub) of 330, 315, and 290 K, respectively. Significant elastic anisotropy is observed and, in these glasses, the elastic anisotropy shows a strong correlation with the molecular orientation. The out‐of‐plane and in‐plane Young's moduli of the highTsub(330 K) sample, which features a predominantly vertical molecular orientation, exhibit a high anisotropy ratio of 2.2. The observed elastic anisotropy is much larger than those previously observed in liquid crystals and even many crystalline solids. 
    more » « less