skip to main content


Title: Assessing support for Blaberoidea phylogeny suggests optimal locus quality
Abstract

Phylogenomics seeks to use next‐generation data to robustly infer an organism's evolutionary history. Yet, the practical caveats of phylogenomics motivate investigation of improved efficiency, particularly when quality of phylogenies are questionable. To achieve improvements, one goal is to maintain or enhance the quality of phylogenetic inference while severely reducing dataset size. We approach this by assessing which kinds of loci in phylogenomic alignments provide the majority of support for a phylogenetic inference of cockroaches in Blaberoidea. We examine locus substitution rate, saturation, evolutionary divergence, rate heterogeneity, stabilizing selection, anda prioriinformation content as traits that may determine optimality. Our controlled experimental design is based on 265 loci for 102 blaberoidean taxa and 22 outgroup species. Loci with high substitution rate, low saturation, low sequence distance, low rate heterogeneity, and strong stabilizing selection derive more support for phylogenetic relationships. We found that some phylogenetic information content estimators may not be meaningful for assessing information contenta priori. We use these findings to design concatenated datasets with an optimized subsample of 100 loci. The tree inferred from the optimized subsample alignment was largely identical to that inferred from all 265 loci but with less evidence of long branch attraction, improved statistical support, and potential 4‐6x improvements to computation time. Supported by phylogenetic and morphological evidence, we erect three newly named clades (Anallactinae Evangelista & Wipflersubfam. nov., Orkrasomeriatax. nov.Evangelista, Wipfler, & Béthoux and Hemithyrsocerini Evangelistatribe nov.) and propose other taxonomic modifications. The diagnosis of Pseudophyllodromiidae Grandcolas, 1996 is modified to accommodate Anallactinae and Pseudophyllodromiinae Vickery & Kevan, 1983. The diagnosis of Ectobiidae Brunner von Wattenwyl, 1865 is modified to add novel morphological characters.

 
more » « less
NSF-PAR ID:
10384977
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Systematic Entomology
Volume:
46
Issue:
1
ISSN:
0307-6970
Page Range / eLocation ID:
p. 157-171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    To examine phylogenetic heterogeneity in turtle evolution, we collected thousands of high-confidence single-copy orthologs from 19 genome assemblies representative of extant turtle diversity and estimated a phylogeny with multispecies coalescent and concatenated partitioned methods. We also collected next-generation sequences from 26 turtle species and assembled millions of biallelic markers to reconstruct phylogenies based on annotated regions from the western painted turtle (Chrysemys picta bellii) genome (coding regions, introns, untranslated regions, intergenic, and others). We then measured gene tree-species tree discordance, as well as gene and site heterogeneity at each node in the inferred trees, and tested for temporal patterns in phylogenomic conflict across turtle evolution. We found strong and consistent support for all bifurcations in the inferred turtle species phylogenies. However, a number of genes, sites, and genomic features supported alternate relationships between turtle taxa. Our results suggest that gene tree-species tree discordance in these data sets is likely driven by population-level processes such as incomplete lineage sorting. We found very little effect of substitutional saturation on species tree topologies, and no clear phylogenetic patterns in codon usage bias and compositional heterogeneity. There was no correlation between gene and site concordance, node age, and DNA substitution rate across most annotated genomic regions. Our study demonstrates that heterogeneity is to be expected even in well-resolved clades such as turtles, and that future phylogenomic studies should aim to sample as much of the genome as possible in order to obtain accurate phylogenies for assessing conservation priorities in turtles. [Discordance; genomes; phylogeny; turtles.]

     
    more » « less
  2. INTRODUCTION Resolving the role that different environmental forces may have played in the apparent explosive diversification of modern placental mammals is crucial to understanding the evolutionary context of their living and extinct morphological and genomic diversity. RATIONALE Limited access to whole-genome sequence alignments that sample living mammalian biodiversity has hampered phylogenomic inference, which until now has been limited to relatively small, highly constrained sequence matrices often representing <2% of a typical mammalian genome. To eliminate this sampling bias, we used an alignment of 241 whole genomes to comprehensively identify and rigorously analyze noncoding, neutrally evolving sequence variation in coalescent and concatenation-based phylogenetic frameworks. These analyses were followed by validation with multiple classes of phylogenetically informative structural variation. This approach enabled the generation of a robust time tree for placental mammals that evaluated age variation across hundreds of genomic loci that are not restricted by protein coding annotations. RESULTS Coalescent and concatenation phylogenies inferred from multiple treatments of the data were highly congruent, including support for higher-level taxonomic groupings that unite primates+colugos with treeshrews (Euarchonta), bats+cetartiodactyls+perissodactyls+carnivorans+pangolins (Scrotifera), all scrotiferans excluding bats (Fereuungulata), and carnivorans+pangolins with perissodactyls (Zooamata). However, because these approaches infer a single best tree, they mask signatures of phylogenetic conflict that result from incomplete lineage sorting and historical hybridization. Accordingly, we also inferred phylogenies from thousands of noncoding loci distributed across chromosomes with historically contrasting recombination rates. Throughout the radiation of modern orders (such as rodents, primates, bats, and carnivores), we observed notable differences between locus trees inferred from the autosomes and the X chromosome, a pattern typical of speciation with gene flow. We show that in many cases, previously controversial phylogenetic relationships can be reconciled by examining the distribution of conflicting phylogenetic signals along chromosomes with variable historical recombination rates. Lineage divergence time estimates were notably uniform across genomic loci and robust to extensive sensitivity analyses in which the underlying data, fossil constraints, and clock models were varied. The earliest branching events in the placental phylogeny coincide with the breakup of continental landmasses and rising sea levels in the Late Cretaceous. This signature of allopatric speciation is congruent with the low genomic conflict inferred for most superordinal relationships. By contrast, we observed a second pulse of diversification immediately after the Cretaceous-Paleogene (K-Pg) extinction event superimposed on an episode of rapid land emergence. Greater geographic continuity coupled with tumultuous climatic changes and increased ecological landscape at this time provided enhanced opportunities for mammalian diversification, as depicted in the fossil record. These observations dovetail with increased phylogenetic conflict observed within clades that diversified in the Cenozoic. CONCLUSION Our genome-wide analysis of multiple classes of sequence variation provides the most comprehensive assessment of placental mammal phylogeny, resolves controversial relationships, and clarifies the timing of mammalian diversification. We propose that the combination of Cretaceous continental fragmentation and lineage isolation, followed by the direct and indirect effects of the K-Pg extinction at a time of rapid land emergence, synergistically contributed to the accelerated diversification rate of placental mammals during the early Cenozoic. The timing of placental mammal evolution. Superordinal mammalian diversification took place in the Cretaceous during periods of continental fragmentation and sea level rise with little phylogenomic discordance (pie charts: left, autosomes; right, X chromosome), which is consistent with allopatric speciation. By contrast, the Paleogene hosted intraordinal diversification in the aftermath of the K-Pg mass extinction event, when clades exhibited higher phylogenomic discordance consistent with speciation with gene flow and incomplete lineage sorting. 
    more » « less
  3. Abstract

    Whole mitochondrial genomes are often used in phylogenetic reconstruction. However, discordant patterns in species relationships between mitochondrial and nuclear phylogenies are commonly observed. Within Anthozoa (Phylum Cnidaria), mitochondrial (mt)-nuclear discordance has not yet been examined using a large and comparable dataset. Here, we used data obtained from target-capture enrichment sequencing to assemble and annotate mt genomes and reconstruct phylogenies for comparisons to phylogenies inferred from hundreds of nuclear loci obtained from the same samples. The datasets comprised 108 hexacorals and 94 octocorals representing all orders and > 50% of extant families. Results indicated rampant discordance between datasets at every taxonomic level. This discordance is not attributable to substitution saturation, but rather likely caused by introgressive hybridization and unique properties of mt genomes, including slow rates of evolution driven by strong purifying selection and substitution rate variation. Strong purifying selection across the mt genomes caution their use in analyses that rely on assumptions of neutrality. Furthermore, unique properties of the mt genomes were noted, including genome rearrangements and the presence ofnad5introns. Specifically, we note the presence of the homing endonuclease in ceriantharians. This large dataset of mitochondrial genomes further demonstrates the utility of off-target reads generated from target-capture data for mt genome assembly and adds to the growing knowledge of anthozoan evolution.

     
    more » « less
  4. Abstract

    One of the key objectives in biological research is understanding how evolutionary processes have produced Earth’s diversity. A critical step toward revealing these processes is an investigation of evolutionary tradeoffs—that is, the opposing pressures of multiple selective forces. For millennia, nocturnal moths have had to balance successful flight, as they search for mates or host plants, with evading bat predators. However, the potential for evolutionary trade-offs between wing shape and body size are poorly understood. In this study, we used phylogenomics and geometric morphometrics to examine the evolution of wing shape in the wild silkmoth subfamily Arsenurinae (Saturniidae) and evaluate potential evolutionary relationships between body size and wing shape. The phylogeny was inferred based on 782 loci from target capture data of 42 arsenurine species representing all 10 recognized genera. After detecting in our data one of the most vexing problems in phylogenetic inference—a region of a tree that possesses short branches and no “support” for relationships (i.e., a polytomy), we looked for hidden phylogenomic signal (i.e., inspecting differing phylogenetic inferences, alternative support values, quartets, and phylogenetic networks) to better illuminate the most probable generic relationships within the subfamily. We found there are putative evolutionary trade-offs between wing shape, body size, and the interaction of fore- and hindwing (HW) shape. Namely, body size tends to decrease with increasing HW length but increases as forewing (FW) shape becomes more complex. Additionally, the type of HW (i.e., tail or no tail) a lineage possesses has a significant effect on the complexity of FW shape. We outline possible selective forces driving the complex HW shapes that make Arsenurinae, and silkmoths as a whole, so charismatic. [Anchored hybrid enrichment; Arsenurinae; geometric morphometrics; Lepidoptera; phylogenomics; Saturniidae.]

     
    more » « less
  5. null (Ed.)
    Camponotus and Colobopsis are widely distributed and species-rich genera in the ant tribe Camponotini. Molecular phylogenetic studies demonstrate that they are not sister taxa, but several lineages within each genus have converged to a remarkable degree, confounding the taxonomy of these ants. Based on multiple lines of evidence, including worker and male morphology, we demonstrate that: (1) three species of “Camponotus” belonging to the subgenus Myrmotemnus, including its type species, are in fact members of the genus Colobopsis ; (2) four species previously assigned to Colobopsis belong to the subgenus Myrmamblys of Camponotus ; and (3) three Nearctic taxa recently placed in Colobopsis are members of the genus Camponotus and closely related to Camponotus clarithorax . These taxonomic findings yield the following new or revived combinations: Colobopsis moeschi ( comb. nov. ), Colobopsis moeschi lygaea ( comb. nov. ), Colobopsis nutans ( comb. nov. ), Colobopsis nutans cleliae ( comb. nov. ), and Colobopsis reichenspergeri ( comb. nov. ); Camponotus apostemata ( comb. nov. ), Camponotus aurelianus ( comb. rev. ), Camponotus cavibregma ( comb. nov. ), Camponotus horrens ( comb. rev. ), Camponotus politae ( comb. rev. ), Camponotus trajanus ( comb. rev. ), and Camponotus yogi ( comb. rev. ). A further consequence is the following generic synonymy (senior synonym listed first): Colobopsis = Myrmotemnus syn. nov. , and Camponotus = Dolophra syn. rev. At the species level, we argue that Camponotus apostemata and Camponotus cavibregma are junior synonyms ( syn. nov. ) of Camponotus yogi , and Camponotus quercicola is a junior synonym ( syn. nov. ) of Ca. laevigatus . Taxonomic comments are also provided on some members of the Camponotus reticulatus group, with Camponotus adustus ( stat. nov. ) and Ca. leucodiscus ( stat. rev. ) being recognized as distinct species rather than subspecies of Ca. bellus . A male-based diagnosis of the Camponotini is provided, and differences between the males of Colobopsis and Camponotus are documented and illustrated for the first time. This study reveals new character systems of potential value to the systematics of these ants, including features of the male genitalia, and emphasizes the value of reciprocal illumination between phylogenomics and critical morphological analysis. 
    more » « less