Organic solar cells incorporating non‐fullerene acceptors (NFAs) have reached remarkable power conversion efficiencies of over 18%. Unlike fullerene derivatives, NFAs tend to crystallize from solutions, resulting in bulk heterojunctions that include a crystalline acceptor phase. This must be considered in any morphology‐function models. Here, it is confirmed that high‐performing solution‐processed indacenodithienothiophene‐based NFAs, i.e., ITIC and its derivatives ITIC‐M, ITIC‐2F, and ITIC‐Th, exhibit at least two crystalline forms. In addition to highly ordered polymorphs that form at high temperatures, NFAs arrange into a low‐temperature metastable phase that is readily promoted via solution processing and leads to the highest device efficiencies. Intriguingly, the low‐temperature forms seem to feature a continuous network that favors charge transport despite of a poorly order along the π–π stacking direction. As the optical absorption of the structurally more disordered low‐temperature phase can surpass that of the more ordered polymorphs while displaying comparable—or even higher—charge transport properties, it is argued that such a packing structure is an important feature for reaching highest device efficiencies, thus, providing guidelines for future materials design and crystal engineering activities.
Organic photovoltaics have achieved breakthroughs in power conversion efficiency due to the superior aggregation and packing nature of non‐fullerene acceptors (NFAs). Solution processing and various treatments would tend to form distinct packing motifs for state‐of‐the‐art NFAs. Herein, the solvent‐induced polymorphism for 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophne) (ITIC) prepared by chloroform (CF) and chlorobenzene (CB) is revealed. The packing motif of ITIC exhibits dense π–π stacking from CF induction, which presents red‐shifted absorption and reversible high‐temperature crystallization and melting. Meanwhile, strong lamellar stacking and π–π stacking can be formed in the CB solution with unstable low‐temperature crystallization and melting. Combining in situ absorption spectra and interaction calculation, the stronger preaggregation of ITIC in the CF solution was found to be the main reason for forming a different packing motif from in the CB solution. The packing and thermodynamic features are retained in the PBDB‐T:ITIC blends, though good miscibility weakens characteristic features. Benefiting from the polymorph structure, CB‐processed devices denote more favorable performance but less thermal stability. This research indicates the significant effect of solvent induction for manipulating and optimizing the morphology of organic solar cell devices.
- Award ID(s):
- 1905790
- PAR ID:
- 10385021
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Solar RRL
- Volume:
- 6
- Issue:
- 12
- ISSN:
- 2367-198X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Organic photovoltaic power conversion efficiencies exceeding 14% can largely be attributed to the development of nonfullerene acceptors (NFAs). Many of these molecules are structural derivatives of IDTBR and ITIC, two common NFAs. By modifying the chemical structure of the acceptor, the optical absorption, energy levels, and bulk heterojunction morphology can be tuned. However, the effect of structural modifications on NFA charge transport properties has not yet been fully explored. In this work, the relationship between chemical structure, molecular packing, and charge transport, as measured in organic thin‐film transistors (OTFTs), is investigated for two high performance NFAs, namely O‐IDTBR and ITIC, along with their structural derivatives EH‐IDTBR and ITIC‐Th. O‐IDTBR exhibits a higher n‐type saturation field effect mobility of 0.12 cm2V−1s−1compared with the other acceptors investigated. This can be attributed to the linear side chains of O‐IDTBR which direct an interdigitated columnar packing motif. The study provides insight into the transport properties and molecular packing of NFAs, thereby contributing to understanding the relationship between chemical structure, material properties, and device performance for these materials. The high electron mobility achieved by O‐IDTBR also suggests its applications can be extended to use as an n‐type semiconductor in OTFTs.
-
Abstract Polymorphism, the ability for a given material to adopt multiple crystalline packing states, is a powerful approach for investigating how changes in molecular packing influence charge transport within organic semiconductors. In this study, a new “thin film” polymorph of the high‐performance, p‐type small molecule N‐octyldiisopropylsilyl acetylene bistetracene (BT) is isolated and characterized. Structural changes in the BT films are monitored using static and in situ grazing‐incidence X‐ray diffraction. The diffraction data, combined with simulation and crystallographic refinement calculations, show the molecular packing of the “thin film” polymorph transforms from a slipped 1D π‐stacking motif to a highly oriented and crystalline film upon solvent vapor annealing with a 2D brick‐layer π‐stacking arrangement, similar to the so‐called “bulk” structure observed in single crystals. Charge transport is characterized as a function of vapor annealing, grain orientation, and temperature. Demonstrating that mobility increases by three orders of magnitude upon solvent vapor annealing and displays a differing temperature‐dependent mobility behavior.
-
Abstract The influence of solvent and processing additives on the pathways and rates of crystalline morphology formation for spin‐coated semiconducting
PTB7 (poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)‐carbonyl]‐thieno[3,4‐b]thiophenediyl]]) thin films is investigated by in situ grazing incidence wide‐angle X‐ray scattering (GIWAXS) and optical reflectance, to better understand polymer solar cell (PSC) optimization approaches. In situ characterization ofPTB7 film formation from chloroform (CF), chlorobenzene (CB), and 1,2‐dichlorobenzene (DCB) solutions, as well as CB solutions with 1% and 3% v/v of the processing additives 1‐chloronapthalene (CN), diphenylether (DPE), and 1,8‐diiodooctane (DIO), reveals multiple crystallization pathways with: (i) single‐solvent systems exhibiting rapid (<3 s) crystallization after a solvent boiling point‐dependent film thinning transition, (ii) solvent + additive systems exhibiting different crystallization pathways and crystallite formation times from minutes (CN, DPE) to 1.5 h (DIO). Identifying crystalline intermediates has implications for bulk‐heterojunction PSC morphology optimization via optimized spin‐casting processes. -
A series of aromatic organic molecules functionalized with different halogen atoms (I/ Br), motion-capable groups (olefin, azo or imine) and molecular length were designed and synthesized. The molecules self-assemble in the solid state through halogen bonding and exhibit molecular packing sustained by either herringbone or face-to-face π-stacking, two common motifs in organic semiconductor molecules. Interestingly, dynamic pedal motion is only achieved in solids with herringbone packing. On average, solids with herringbone packing exhibit larger thermal expansion within the halogen-bonded sheets due to motion occurrence and molecular twisting, whereas molecules with face-to-face π-stacking do not undergo motion or twisting. Thermal expansion along the π-stacked direction is surprisingly similar, but slightly larger for the face-to-face π-stacked solids due to larger changes in π-stacking distances with temperature changes. The results speak to the importance of crystal packing and intermolecular interaction strength when designing aromatic-based solids for organic electronics applications.more » « less