p-Type molecular dopants are a class of high electron affinity (EA) molecules used to ionize organic electronic materials for device applications. It is extremely challenging to ionize high-performance, high-ionization energy (IE) polymers because the dopant molecule needs to be compatible with solution processing. Here, we describe the synthesis and characterization of two new solution processable molecular dopants with the highest EA values yet reported. These molecules, based on the parent hexacyanotrimethylenecyclopropane (CN6-CP) structure, achieve solubility by the substitution of one or more of the cyano groups with esters, which both reduces the volatility relative to CN6-CP and allows for solution processing. The efficacy of these new molecular dopants, which have EA values up to 5.75 eV with respect to vacuum, was tested by performing sequential solution doping experiments with a series of thiophene and alternating diketopyrrolopyrrole polymers with IEs ranging from 5.10 eV to 5.63 eV. For completeness, the new dopant results are compared to a previously reported tri-ester substituted CN6-CP analogue with an EA of 5.50 EV. The increased EA of these stronger dopants induces a 10–100 fold increase in film conductivity and saturation of the conductivity at 15–100 S cm −1 for almost all polymers tested. These new dopant structures enable controlled solution doping at high doping levels for most alternating co-polymers of interest to the organic electronics community.
more »
« less
Thermally Activated Aromatic Ionic Dopants (TA‐AIDs) Enabling Stable Doping, Orthogonal Processing and Direct Patterning
Abstract Doping plays a critical role in organic electronics, and dopant design has been central in the development of functional and stable doping. In this study, there is departure from conventional molecular dopants and a new class of dopants are reported – aromatic ionic dopants (AIDs). AIDs consist of a pair of aromatic cation and anion that are responsible for molecular doping reaction and charge balancing separately. It is shown that the first AID made from cycloheptatrienyl (tropylium) cation and pentacyanocyclopentadienide anion (PCCp), abbreviated as T‐PCCp, can function as an effectivep‐type dopant to dope polydioxythiophenes. Here, tropylium cation induces the doping reaction while the PCCp anion stabilizes the generated polarons and bipolarons. With T‐PCCp, a highly doped (≈120 S/cm) and stable system is achieved up to 150 °C, an orthogonal (sequential)solution processing resulting from the immiscibility of the dopant and the polymer host, and a high‐resolution direct micropatterning with laser writing resulted from a thermally activated doping process.
more »
« less
- Award ID(s):
- 1905734
- PAR ID:
- 10385023
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 33
- Issue:
- 8
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Control over the distribution of dopants in nanowires is essential for regulating their electronic properties, but perturbations in nanowire microstructure may affect doping. Conversely, dopants may be used to control nanowire microstructure including the generation of twinning superlattices (TSLs)—periodic arrays of twin planes. Here the spatial distribution of Be dopants in a GaAs nanowire with a TSL is investigated using atom probe tomography. Homogeneous dopant distributions in both the radial and axial directions are observed, indicating a decoupling of the dopant distribution from the nanowire microstructure. Although the dopant distribution is microscopically homogenous, radial distribution function analysis discovered that 1% of the Be atoms occur in substitutional-interstitial pairs. The pairing confirms theoretical predictions based on the low defect formation energy. These findings indicate that using dopants to engineer microstructure does not necessarily imply that the dopant distribution is non-uniform.more » « less
-
Abstract The ability to control the density and spatial distribution of substitutional dopants in semiconductors is crucial for achieving desired physicochemical properties. Substitutional doping with adjustable doping levels has been previously demonstrated in 2D transition metal dichalcogenides (TMDs); however, the spatial control of dopant distribution remains an open field. In this work, edge termination is demonstrated as an important characteristic of 2D TMD monocrystals that affects the distribution of substitutional dopants. Particularly, in chemical vapor deposition (CVD)‐grown monolayer WS2, it is found that a higher density of transition metal dopants is always incorporated in sulfur‐terminated domains when compared to tungsten‐terminated domains. Two representative examples demonstrate this spatial distribution control, including hexagonal iron‐ and vanadium‐doped WS2monolayers. Density functional theory (DFT) calculations are further performed, indicating that the edge‐dependent dopant distribution is due to a strong binding of tungsten atoms at tungsten‐zigzag edges, resulting in the formation of open sites at sulfur‐zigzag edges that enable preferential dopant incorporation. Based on these results, it is envisioned that edge termination in crystalline TMD monolayers can be utilized as a novel and effective knob for engineering the spatial distribution of substitutional dopants, leading to in‐plane hetero‐/multi‐junctions that display fascinating electronic, optoelectronic, and magnetic properties.more » « less
-
Abstract Carrier mobility in doped conjugated polymers is limited by Coulomb interactions with dopant counterions. This complicates studying the effect of the dopant's oxidation potential on carrier generation because different dopants have different Coulomb interactions with polarons on the polymer backbone. Here, dodecaborane (DDB)‐based dopants are used, which electrostatically shield counterions from carriers and have tunable redox potentials at constant size and shape. DDB dopants produce mobile carriers due to spatial separation of the counterion, and those with greater energetic offsets produce more carriers. Neutron reflectometry indicates that dopant infiltration into conjugated polymer films is redox‐potential‐driven. Remarkably, X‐ray scattering shows that despite their large 2‐nm size, DDBs intercalate into the crystalline polymer lamellae like small molecules, indicating that this is the preferred location for dopants of any size. These findings elucidate why doping conjugated polymers usually produces integer, rather than partial charge transfer: dopant counterions effectively intercalate into the lamellae, far from the polarons on the polymer backbone. Finally, it is shown that the IR spectrum provides a simple way to determine polaron mobility. Overall, higher oxidation potentials lead to higher doping efficiencies, with values reaching 100% for driving forces sufficient to dope poorly crystalline regions of the film.more » « less
-
Abstract Doping the electron‐transport polymer poly{[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} [P(NDI2OD‐T2)] with the bulky, strongly reducing metallocene 1,2,3,4,1′,2′,3′,4′‐octaphenylrhodocene (OPR) leads to an increased bulk conductivity and a decreased contact resistance. While the former arises from low‐level n‐doping of the intrinsic polymer and increased carrier mobility due to trap‐filling, the latter arises from a pronounced accumulation of dopant molecules at an indium tin oxide (ITO) substrate. Electron transfer from OPR to ITO leads to a work function reduction, which pins the Fermi level at the P(NDI2OD‐T2) conduction band and thus minimizes the electron injection barrier and the contact resistance. The results demonstrate that disentangling the effects of electrode modification by the dopant and bulk doping is essential to comprehensively understand doped organic semiconductors.more » « less