We describe ENRICHDB, a new DBMS technology designed for emerging domains (e.g., sensor-driven smart spaces and social media analytics) that require incoming data to be enriched using expensive functions prior to its usage. To support online processing, today, such enrichment is performed outside of DBMSs, as a static data processing workflow prior to its ingestion into a DBMS. Such a strategy could result in a significant delay from the time when data arrives and when it is enriched and ingested into the DBMS, especially when the enrichment complexity is high. Also, enriching at ingestion could result in wastage of resources if applications do not use/require all data to be enriched. ENRICHDB's design represents a significant departure from the above, where we explore seamless integration of data enrichment all through the data processing pipeline - at ingestion, triggered based on events in the background, and progressively during query processing. The cornerstone of ENRICHDB is a powerful enrichment data and query model that encapsulates enrichment as an operator inside a DBMS enabling it to co-optimize enrichment with query processing. This paper describes this data model and provides a summary of the system implementation.
more »
« less
JENNER: just-in-time enrichment in query processing
Emerging domains, such as sensor-driven smart spaces and social media analytics, require incoming data to be enriched prior to its use. Enrichment often consists of machine learning (ML) functions that are too expensive/infeasible to execute at ingestion. We develop a strategy entitled Just-in-time ENrichmeNt in quERy Processing (JENNER) to support interactive analytics over data as soon as it arrives for such application context. JENNER exploits the inherent tradeoffs of cost and quality often displayed by the ML functions to progressively improve query answers during query execution. We describe how JENNER works for a large class of SPJ and aggregation queries that form the bulk of data analytics workload. Our experimental results on real datasets (IoT and Tweet) show that JENNER achieves progressive answers performing significantly better than the naive strategies of achieving progressive computation.
more »
« less
- Award ID(s):
- 2008993
- PAR ID:
- 10385143
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 15
- Issue:
- 11
- ISSN:
- 2150-8097
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Range aggregate queries (RAQs) are an integral part of many real-world applications, where, often, fast and approximate answers for the queries are desired. Recent work has studied answering RAQs using machine learning (ML) models, where a model of the data is learned to answer the queries. However, there is no theoretical understanding of why and when the ML based approaches perform well. Furthermore, since the ML approaches model the data, they fail to capitalize on any query specific information to improve performance in practice. In this paper, we focus on modeling "queries" rather than data and train neural networks to learn the query answers. This change of focus allows us to theoretically study our ML approach to provide a distribution and query dependent error bound for neural networks when answering RAQs. We confirm our theoretical results by developing NeuroSketch, a neural network framework to answer RAQs in practice. Extensive experimental study on real-world, TPC-benchmark and synthetic datasets show that NeuroSketch answers RAQs multiple orders of magnitude faster than state-of-the-art and with better accuracy.more » « less
-
Progressive visual analytics enable data scientists to efficiently explore large datasets and examine progressive results with low latency. Most progressive visualization frameworks use a progressive query processing module that controls the quality of the results and then feeds these results into a visualization module. The goal is to avoid poor-quality progressive results which could mislead data scientists. This method misses some optimization opportunities as it improves the quality of the intermediate result while ignoring how this result affects the final visualization. This work presents a work-in-progress quality-aware progressive visualization input control component, named QPV. The key idea of the proposed framework is to integrate the visualization module into the progressive query results so that the quality control takes into account the final visualization. With limited computational resources, QPV solves an optimization problem to allocate resources and alleviate the misleading effects in the progressive plots.more » « less
-
null (Ed.)Query-based explanations for missing answers identify which operators of a query are responsible for the failure to return a missing answer of interest. This type of explanations has proven useful, e.g., to debug complex analytical queries. Such queries are frequent in big data systems such as Apache Spark. We present a novel approach to produce query-based explanations. It is the first to support nested data and to consider operators that modify the schema and structure of the data (e.g., nesting, projections) as potential causes of missing answers. To efficiently compute explanations, we propose a heuristic algorithm that applies two novel techniques: (i) reasoning about multiple schema alternatives for a query and (ii) re-validating at each step whether an intermediate result can contribute to the missing answer. Using an implementation on Spark, we demonstrate that our approach is the first to scale to large datasets while often finding explanations that existing techniques fail to identify.more » « less
-
We will demonstrate a prototype query-processing engine, which utilizes correlations among predicates to accelerate machine learning (ML) inference queries on unstructured data. Expensive operators such as feature extractors and classifiers are deployed as user-defined functions (UDFs), which are not penetrable by classic query optimization techniques such as predicate push-down. Recent optimization schemes (e.g., Probabilistic Predicates or PP) build a cheap proxy model for each predicate offline, and inject proxy models in the front of expensive ML UDFs under the independence assumption in queries. Input records that do not satisfy query predicates are filtered early by proxy models to bypass ML UDFs. But enforcing the independence assumption may result in sub-optimal plans. We use correlative proxy models to better exploit predicate correlations and accelerate ML queries. We will demonstrate our query optimizer called CORE, which builds proxy models online, allocates parameters to each model, and reorders them. We will also show end-to-end query processing with or without proxy models.more » « less
An official website of the United States government

