skip to main content


Title: Y-Z cut lithium niobate longitudinal piezoelectric resonant photoelastic modulator

The capability to modulate the intensity of an optical beam has scientific and practical significance. In this work, we demonstrate Y-Z cut lithium niobate acousto-optic modulators with record-high modulation efficiency, requiring only 1.5 W/cm2for 100% modulation at 7 MHz. These modulators use a simple fabrication process; coating the top and bottom surfaces of a thin lithium niobate wafer with transparent electrodes. The fundamental shear acoustic mode of the wafer is excited through the transparent electrodes by applying voltage with frequency corresponding to the resonant frequency of this mode, confining an acoustic standing wave to the electrode region. Polarization of light propagating through this region is modulated at the applied frequency. Polarization modulation is converted to intensity modulation by placing the modulator between polarizers. To showcase an important application space for this modulator, we integrate it with a standard image sensor and demonstrate 4 megapixel time-of-flight imaging.

 
more » « less
PAR ID:
10385175
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
26
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 47103
Size(s):
Article No. 47103
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Intensity modulators are an essential component in optics for controlling free-space beams. Many applications require the intensity of a free-space beam to be modulated at a single frequency, including wide-field lock-in detection for sensitive measurements, mode-locking in lasers, and phase-shift time-of-flight imaging (LiDAR). Here, we report a new type of single frequency intensity modulator that we refer to as a longitudinal piezoelectric resonant photoelastic modulator. The modulator consists of a thin lithium niobate wafer coated with transparent surface electrodes. One of the fundamental acoustic modes of the modulator is excited through the surface electrodes, confining an acoustic standing wave to the electrode region. The modulator is placed between optical polarizers; light propagating through the modulator and polarizers is intensity modulated with a wide acceptance angle and record breaking modulation efficiency in the megahertz frequency regime. As an illustration of the potential of our approach, we show that the proposed modulator can be integrated with a standard image sensor to effectively convert it into a time-of-flight imaging system.

     
    more » « less
  2. Since the advent of the laser, acousto-optic modulators have been an important tool for controlling light. Recent advances in on-chip lithium niobate waveguide technology present new opportunities for these devices. We demonstrate a collinear acousto-optic modulator in a suspended film of lithium niobate employing a high-confinement, wavelength-scale waveguide. By strongly confining the optical and mechanical waves, this modulator improves a figure-of-merit that accounts for both acousto-optic and electro-mechanical efficiency by orders of magnitude. Our device demonstration marks a significant technological advance in acousto-optics that promises a novel class of compact and low-power frequency shifters, tunable filters, non-magnetic isolators, and beam deflectors.

     
    more » « less
  3. Modulation-based control and locking of lasers, filters and other photonic components is a ubiquitous function across many applications that span the visible to infrared (IR), including atomic, molecular and optical (AMO), quantum sciences, fiber communications, metrology, and microwave photonics. Today, modulators used to realize these control functions consist of high-power bulk-optic components for tuning, sideband modulation, and phase and frequency shifting, while providing low optical insertion loss and operation from DC to 10s of MHz. In order to reduce the size, weight and cost of these applications and improve their scalability and reliability, modulation control functions need to be implemented in a low loss, wafer-scale CMOS-compatible photonic integration platform. The silicon nitride integration platform has been successful at realizing extremely low waveguide losses across the visible to infrared and components including high performance lasers, filters, resonators, stabilization cavities, and optical frequency combs. Yet, progress towards implementing low loss, low power modulators in the silicon nitride platform, while maintaining wafer-scale process compatibility has been limited. Here we report a significant advance in integration of a piezo-electric (PZT, lead zirconate titanate) actuated micro-ring modulation in a fully-planar, wafer-scale silicon nitride platform, that maintains low optical loss (0.03 dB/cm in a 625 µm resonator) at 1550 nm, with an order of magnitude increase in bandwidth (DC - 15 MHz 3-dB and DC - 25 MHz 6-dB) and order of magnitude lower power consumption of 20 nW improvement over prior PZT modulators. The modulator provides a >14 dB extinction ratio (ER) and 7.1 million quality-factor (Q) over the entire 4 GHz tuning range, a tuning efficiency of 162 MHz/V, and delivers the linearity required for control applications with 65.1 dB·Hz2/3and 73.8 dB·Hz2/3third-order intermodulation distortion (IMD3) spurious free dynamic range (SFDR) at 1 MHz and 10 MHz respectively. We demonstrate two control applications, laser stabilization in a Pound-Drever Hall (PDH) lock loop, reducing laser frequency noise by 40 dB, and as a laser carrier tracking filter. This PZT modulator design can be extended to the visible in the ultra-low loss silicon nitride platform with minor waveguide design changes. This integration of PZT modulation in the ultra-low loss silicon nitride waveguide platform enables modulator control functions in a wide range of visible to IR applications such as atomic and molecular transition locking for cooling, trapping and probing, controllable optical frequency combs, low-power external cavity tunable lasers, quantum computers, sensors and communications, atomic clocks, and tunable ultra-low linewidth lasers and ultra-low phase noise microwave synthesizers.

     
    more » « less
  4. Thin-film lithium niobate (TFLN) is a promising electro-optic (EO) photonics platform with high modulation bandwidth, low drive voltage, and low optical loss. However, EO modulation in TFLN is known to relax on long timescales. Instead, thermo-optic heaters are often used for stable biasing, but heaters incur challenges with cross-talk, high power, and low bandwidth. Here, we characterize the low-frequency (1 mHz to 1 MHz) EO response of TFLN modulators, investigate the root cause of EO relaxation and demonstrate methods to improve bias stability. We show that relaxation-related effects can enhance EO modulation across a frequency band spanning 1kHz to 20kHz in our devices – a counter-intuitive result that can confound measurement of half-wave voltage (Vπ) in TFLN modulators. We also show that EO relaxation can be slowed by more than 104-fold through control of the LN-metal interface and annealing, offering progress toward lifetime-stable EO biasing. Such robust EO biasing would enable applications for TFLN devices where cross-talk, power, and bias bandwidth are critical, such as quantum devices, high-density integrated photonics, and communications.

     
    more » « less
  5. We demonstrate a thin film lithium niobate electro-optic modulator operating at 456 nm with an RF voltage-length product of 0.38 V-cm and a bandwidth of 6.9 GHz. We test the dielectric relaxation of the modulator with sweeps of temperature and optical input power, and compare equivalent modulators with electrode materials of Cr-Au, Ti-Au and Al in terms of bias stability and current-voltage characteristics. We demonstrate bias stability over at least 8 hours with Al devices, and show relationships between drift, I-V characteristics and ferroelectric domain switching.

     
    more » « less