skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: L -band spectroscopy of young brown dwarfs
ABSTRACT

We present a L-band (2.98–3.96 $\mu$m) spectroscopic study of eight young L dwarfs with spectral types ranging from L2 to L7. Our spectra (λ/Δλ ≈ 250–600) were collected using the Gemini near-infrared spectrograph. We first examine the young L-band spectral sequence, most notably analysing the evolution of the Q-branch of methane absorption feature at 3.3 $\mu$m. We find the Q-branch feature first appears between L3 and L6, as previously seen in older field dwarfs. Secondly, we analyse how well various atmospheric models reproduce the Lband and published near-IR (0.7–2.5 $\mu$m) spectra of our objects by fitting five different grids of model spectra to the data. Best-fit parameters for the combined near-IR and L-band data are compared to best-fit parameters for just the near-IR data, isolating the impact that the addition of the L band has on the results. This addition notably causes a ∼100 K drop in the best-fit effective temperature. Also, when clouds and a vertical mixing rate (Kzz) are included in the models, thick clouds, and higher Kzz values are preferred. Five of our objects also have previously published effective temperatures and surface gravities derived using evolutionary models, age estimates, and bolometric luminosities. Comparing model spectra matching these parameters to our spectra, we find disequilibrium chemistry and clouds are needed to match these published effective temperatures. Three of these objects are members of AB Dor, allowing us to show the temperature dependence of the Q-branch of methane.

 
more » « less
PAR ID:
10385185
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
518
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4870-4894
Size(s):
p. 4870-4894
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a uniform forward-modeling analysis of 90 late-M and L dwarfs in nearby young (∼10–200 Myr) moving groups, the Pleiades, and the Hyades using low-resolution (R≈ 150) near-infrared (0.9–2.4μm) spectra and the BT-Settl model atmospheres. We derive the objects’ effective temperatures, surface gravities, radii, and masses by comparing our spectra to the models using a Bayesian framework with nested sampling and calculate the same parameters using evolutionary models. Assuming the evolutionary-based parameters are more robust, our spectroscopically inferred parameters from BT-Settl exhibit two types of systematic behavior for objects near the M-L spectral type boundary. Several objects are clustered aroundTeff≈ 1800 K andlogg5.5dex, implying impossibly large masses (150–1400MJup), while others are clustered aroundTeff≳ 3000 K andlogg3.0dex, implying unphysically low masses and unreasonably young ages. We find the fitted BT-Settl model spectra tend to overpredict the peakJ- andH-band flux for objects located near the M-L boundary, suggesting the dust content included in the model atmospheres is insufficient to match the observations. By adding an interstellar medium–like reddening law to the BT-Settl model spectra, we find the fits between models and observed spectra are greatly improved, with the largest reddening coefficients occurring at the M-L transition. This work delivers a systematic examination of the BT-Settl model atmospheres and constitutes the largest spectral analysis of benchmark late-M- and L-type brown dwarfs to date.

     
    more » « less
  2. Abstract

    We derive the bolometric luminosities (Lbol) of 865 field-age and 189 young ultracool dwarfs (spectral types M6–T9, including 40 new discoveries presented here) by directly integrating flux-calibrated optical to mid-infrared (MIR) spectral energy distributions (SEDs). The SEDs consist of low-resolution (R∼ 150) near-infrared (NIR; 0.8–2.5μm) spectra (including new spectra for 97 objects), optical photometry from the Pan-STARRS1 survey, and MIR photometry from the CatWISE2020 survey and Spitzer/IRAC. OurLbolcalculations benefit from recent advances in parallaxes from Gaia, Spitzer, and UKIRT, as well as new parallaxes for 19 objects from CFHT and Pan-STARRS1 presented here. Coupling ourLbolmeasurements with a new uniform age analysis for all objects, we estimate substellar masses, radii, surface gravities, and effective temperatures (Teff) using evolutionary models. We construct empirical relationships forLbolandTeffas functions of spectral type and absolute magnitude, determine bolometric corrections in optical and infrared bandpasses, and study the correlation between evolutionary model-derived surface gravities and NIR gravity classes. Our sample enables a detailed characterization ofBT-SettlandATMO2020 atmospheric model systematics as a function of spectral type and position in the NIR color–magnitude diagram. We find the greatest discrepancies between atmospheric and evolutionary model-derivedTeff(up to 800 K) and radii (up to 2.0RJup) at the M/L spectral type transition boundary. With 1054 objects, this work constitutes the largest sample to date of ultracool dwarfs with determinations of their fundamental parameters.

     
    more » « less
  3. Abstract

    Infrared-faint white dwarfs are cool white dwarfs exhibiting significant infrared flux deficits, most often attributed to collision-induced absorption (CIA) from H2–He in mixed hydrogen–helium atmospheres. We present James Webb Space Telescope (JWST) near- and mid-infrared spectra of three such objects using Near-Infrared Spectrograph (0.6–5.3μm) and Mid-Infrared Instrument (5–14μm): LHS 3250, WD J1922+0233, and LHS 1126. Surprisingly, for LHS 3250, we detect no H2–He CIA absorption at 2.4μm, instead observing an unexpected small flux bump at this wavelength. WD J1922+0233 exhibits the anticipated strong absorption feature centered at 2.4μm, but with an unexpected narrow emission-like feature inside this absorption band. LHS 1126 shows no CIA features and follows aλ−2power law in the mid-infrared. LHS 1126's lack of CIA features suggests a very low hydrogen abundance, with its infrared flux depletion likely caused by He–He–He CIA. For LHS 3250 and WD J1922+0233, the absence of a 1.2μm CIA feature in both stars argues against ultracool temperatures, supporting recent suggestions that infrared-faint (IR-faint) white dwarfs are warmer and more massive than previously thought. This conclusion is further solidified by Keck near-infrared spectroscopy of seven additional objects. We explore possible explanations for the unexpected emission-like features in both stars, and temperature inversions above the photosphere emerge as a promising hypothesis. Such inversions may be common among the IR-faint population, and since they significantly affect the infrared spectral energy distribution, this would impact their photometric fits. Further JWST observations are needed to confirm the prevalence of this phenomenon and guide the development of improved atmospheric models.

     
    more » « less
  4. ABSTRACT

    Analysis of all archival 5–14 micron spectra of field ultracool dwarfs from the Infrared Spectrograph on the Spitzer Space Telescope has shown that absorption by silicates in the 8–11 micron region is seen in most L-type (1300 to 2200 K) dwarfs. The absorption is caused by silicate-rich clouds in the atmospheres of L dwarfs and is strongest at L4–L6 spectral types. Herein we compare averages of the mid-infrared silicate absorption signatures of L3–L7 dwarfs that have low (≲104.5 cm s−2) versus high (≳105 cm s−2) surface gravity. We find that the silicate absorption feature is sensitive to surface gravity, with young atmospheres having a broader, redder, and more asymmetric absorption profile. This indicates a difference in grain size and composition between dust condensates in young and old mid-L dwarfs. The mean silicate absorption profile of low-gravity mid-L dwarfs matches expectations for ∼1 micron-sized amorphous iron- and magnesium-bearing pyroxene (MgxFe1 − xSiO3) grains. High-gravity mid-L dwarfs have silicate absorption better represented by smaller (≲0.1 μm) and more volatile amorphous enstatite (MgSiO3) or SiO grains. This is the first direct spectroscopic evidence for gravity-dependent sedimentation of dust condensates in ultracool atmospheres. It confirms theoretical expectations for lower sedimentation efficiencies in low-gravity atmospheres and independently confirms their increased dustiness.

     
    more » « less
  5. Abstract

    The unprecedented medium-resolution (Rλ∼ 1500–3500) near- and mid-infrared (1–18μm) spectrum provided by JWST for the young (140 ± 20 Myr) low-mass (12–20MJup) L–T transition (L7) companion VHS 1256 b gives access to a catalog of molecular absorptions. In this study, we present a comprehensive analysis of this data set utilizing a forward-modeling approach applying our Bayesian framework,ForMoSA. We explore five distinct atmospheric models to assess their performance in estimating key atmospheric parameters:Teff, log(g), [M/H], C/O,γ,fsed, andR. Our findings reveal that each parameter’s estimate is significantly influenced by factors such as the wavelength range considered and the model chosen for the fit. This is attributed to systematic errors in the models and their challenges in accurately replicating the complex atmospheric structure of VHS 1256 b, notably the complexity of its clouds and dust distribution. To propagate the impact of these systematic uncertainties on our atmospheric property estimates, we introduce innovative fitting methodologies based on independent fits performed on different spectral windows. We finally derived aTeffconsistent with the spectral type of the target, considering its young age, which is confirmed by our estimate of log(g). Despite the exceptional data quality, attaining robust estimates for chemical abundances [M/H] and C/O, often employed as indicators of formation history, remains challenging. Nevertheless, the pioneering case of JWST’s data for VHS 1256 b has paved the way for future acquisitions of substellar spectra that will be systematically analyzed to directly compare the properties of these objects and correct the systematics in the models.

     
    more » « less