Current methods used to quantify brain size and compartmental scaling relationships in studies of social insect brain evolution involve manual annotations of images from histological samples, confocal microscopy or other sources. This process is susceptible to human bias and error and requires time-consuming effort by expert annotators. Standardized brain atlases, constructed through 3D registration and automatic segmentation, surmount these issues while increasing throughput to robustly sample diverse morphological and behavioral phenotypes. Here we design and evaluate three strategies to construct statistical brain atlases, or templates, using ants as a model taxon. The first technique creates a template by registering multiple brains of the same species. Brain regions are manually annotated on the template, and the labels are transformed back to each individual brain to obtain an automatic annotation, or to any other brain aligned with the template. The second strategy also creates a template from multiple brain images but obtains labels as a consensus from multiple manual annotations of individual brains comprising the template. The third technique is based on a template comprising brains from multiple species and the consensus of their labels. We used volume similarity as a metric to evaluate the automatic segmentation produced by each method against the inter- and intra-individual variability of human expert annotators. We found that automatic and manual methods are equivalent in volume accuracy, making the template technique an extraordinary tool to accelerate data collection and reduce human bias in the study of the evolutionary neurobiology of ants and other insects.
more »
« less
TemplateFlow: FAIR-sharing of multi-scale, multi-species brain models
Abstract Reference anatomies of the brain (‘templates’) and corresponding atlases are the foundation for reporting standardized neuroimaging results. Currently, there is no registry of templates and atlases; therefore, the redistribution of these resources occurs either bundled within existing software or in ad hoc ways such as downloads from institutional sites and general-purpose data repositories. We introduce TemplateFlow as a publicly available framework for human and non-human brain models. The framework combines an open database with software for access, management, and vetting, allowing scientists to share their resources under FAIR—findable, accessible, interoperable, and reusable—principles. TemplateFlow enables multifaceted insights into brains across species, and supports multiverse analyses testing whether results generalize across standard references, scales, and in the long term, species.
more »
« less
- Award ID(s):
- 1912266
- PAR ID:
- 10385248
- Date Published:
- Journal Name:
- Nature Methods
- Volume:
- 19
- Issue:
- 12
- ISSN:
- 1548-7091
- Page Range / eLocation ID:
- 1568 to 1571
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The heterogeneity of brain imaging methods in neuroscience provides rich data that cannot be captured by a single technique, and our interpretations benefit from approaches that enable easy comparison both within and across different data types. For example, comparing brain-wide neural dynamics across experiments and aligning such data to anatomical resources, such as gene expression patterns or connectomes, requires precise alignment to a common set of anatomical coordinates. However, this is challenging because registeringin vivofunctional imaging data toex vivoreference atlases requires accommodating differences in imaging modality, microscope specification, and sample preparation. We overcome these challenges inDrosophilaby building anin vivoreference atlas from multiphoton-imaged brains, called the Functional Drosophila Atlas (FDA). We then develop a two-step pipeline, BrIdge For Registering Over Statistical Templates (BIFROST), for transforming neural imaging data into this common space and for importingex vivoresources such as connectomes. Using genetically labeled cell types as ground truth, we demonstrate registration with a precision of less than 10 microns. Overall, BIFROST provides a pipeline for registering functional imaging datasets in the fly, both within and across experiments. SignificanceLarge-scale functional imaging experiments inDrosophilahave given us new insights into neural activity in various sensory and behavioral contexts. However, precisely registering volumetric images from different studies has proven challenging, limiting quantitative comparisons of data across experiments. Here, we address this limitation by developing BIFROST, a registration pipeline robust to differences across experimental setups and datasets. We benchmark this pipeline by genetically labeling cell types in the fly brain and demonstrate sub-10 micron registration precision, both across specimens and across laboratories. We further demonstrate accurate registration betweenin-vivobrain volumes and ultrastructural connectomes, enabling direct structure-function comparisons in future experiments.more » « less
-
Sex differences in brain structure significantly influence traumatic brain injury (TBI) onset and progression, yet this area is understudied. Herein, we developed sex-specific brain anatomical (macroscale) and axonal tract (mesoscale) templates and explored the sex variations at subject level using a set of T1-MRI (609 males, 721 females) and DTI images (506 males, 594 females). The FreeSurfer, ANTs, and DSI-Studio packages were used. We investigated overall/regional volumes, DTI metrics (including fractional anisotropy (FA), mean diffusivity, and radial diffusivity), and connectivity matrix across 23 brain regions. The brain connectome was derived by multiplying the fiber tract counts and the FA values within the connecting tracts, quantifying the connection strength within each pair of regions. Our subject-wise analysis revealed significant sex based differences (Mann-Whitney p-values < 0.05) across most studied regions for all parameters. The largest sex differences in brain connections were observed in five regions: corpus callosum and right/left cortex and cerebral white matter, all stronger in females. Brain regions were typically larger in males, yet females had higher fractional volumes in the majority of regions except for CSF and ventricles, known for their cushioning effect during head impacts. Additionally, the sex-specific templates better represented their targeted sex compared to opposite or mixed-sex populations as evaluated by root-mean-square-errors when comparing the DTI metrics and connectivity from the DTI templates against the median of subjects and deformation field in registering the subjects to the T1-MRI templates. Our findings highlight the necessity of sex-specific templates in accurate brain modeling and TBI research.more » « less
-
he sex-based human brain structural variations alongside the necessity and development process for sex-specific brain templates were investigated in this study. Comparing magnetic resonance images of 500 female and 500 male subjects, no significant sex-based difference was observed for average cortical thickness, however, all the volumetric values, including the total brain volume (TBV) and major 19 brain regions, were found to be significantly different between females and males. Moreover, analyzing the fractional volume of the regions showed that these sex variations were not proportional to TBV for all regions. These findings underscore the importance of distinguishing the sex-based differences in human brain studies. While brain templates have been developed for general population and cohorts with the same characteristics such as race or age, there is a lack of sex-specific brain templates. To fill this gap and find a representative reference brain image for each sex, nonlinear templates were developed for female, male, and mixed population subjects. Next, a separate set of 109 female and 109 male brain images were used to evaluate the sex-specificity of the brain templates. It was observed that the female and male test subjects were registered to their sex-specific templates with the lowest amount of deformation/warping confirming better representativeness of the sex-specific templates for their target population. The findings of this study including the templates and the reported variations can be used in research involving sex dimorphic brain disorders, diseases, and/or injuries such as traumatic brain injury that is affected by the sex-based brain anatomical differences. Statement of significance: Human brain exhibits sex-based variation both in size and volumetric composition of different regions. Despite these differences, there is a paucity of sex-specific brain templates. Addressing this gap marks the significance of our study as briefly explained here. We have shown that differences in male and female brain go beyond simple scaling and the observation of regional differences that are not proportional to the sex-based total brain volume variations has motivated us to develop sex-specific templates. The representativeness and difference of these sex-specific templates were assessed by measuring the amount of required warping in nonlinear registration of test subjects to them. It was shown that registration of female and male subjects to their corresponding sex-specific template involved lower level of warping compared to their registration to their opposite sex or mixed population brain template.more » « less
-
Abstract Background Glioblastoma Multiforme (GBM) is a fast-growing and highly aggressive brain tumor that invades the nearby brain tissue and presents secondary nodular lesions across the whole brain but generally does not spread to distant organs. Without treatment, GBM can result in death in about 6 months. The challenges are known to depend on multiple factors: brain localization, resistance to conventional therapy, disrupted tumor blood supply inhibiting effective drug delivery, complications from peritumoral edema, intracranial hypertension, seizures, and neurotoxicity. Main text Imaging techniques are routinely used to obtain accurate detections of lesions that localize brain tumors. Especially magnetic resonance imaging (MRI) delivers multimodal images both before and after the administration of contrast, which results in displaying enhancement and describing physiological features as hemodynamic processes. This review considers one possible extension of the use of radiomics in GBM studies, one that recalibrates the analysis of targeted segmentations to the whole organ scale. After identifying critical areas of research, the focus is on illustrating the potential utility of an integrated approach with multimodal imaging, radiomic data processing and brain atlases as the main components. The templates associated with the outcome of straightforward analyses represent promising inference tools able to spatio-temporally inform on the GBM evolution while being generalizable also to other cancers. Conclusions The focus on novel inference strategies applicable to complex cancer systems and based on building radiomic models from multimodal imaging data can be well supported by machine learning and other computational tools potentially able to translate suitably processed information into more accurate patient stratifications and evaluations of treatment efficacy. Graphical Abstractmore » « less
An official website of the United States government

