skip to main content


Title: Reversible crosslinked assembly of a trimeric coiled‐coil peptide into a three‐dimensional matrix for cell encapsulation and release

Mimicking the extracellular matrix (ECM) continues to be a goal in the field of regenerative medicine. Herein, we report a modified trimeric GCN4 coiled‐coil sequence containing three ligands for metal ions specifically positioned for crosslinked assembly (TriCross). In the presence of metal ions,TriCrossassembles into a three‐dimensional (3D) matrix with significant cavities to accommodate cells. The matrix was found to be stable in media with serum, and mild removal of the metal leads to disassembly. By assemblingTriCrosswith a suspension of cells in media, the matrix encapsulates cells during the assembly process leading to high cell viability. Further disassembly under mild conditions allows for the release of cells from the scaffold. As such, this peptide‐based material displays many of the characteristics necessary for successful 3D cell culture.

 
more » « less
PAR ID:
10385303
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Peptide Science
Volume:
28
Issue:
1
ISSN:
1075-2617
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Science and medicine have become increasingly “human‐centric” over the years. A growing shift away from the use of animals in basic research has led to the development of sophisticated in vitro models of various tissues utilizing human‐derived cells to study physiology and disease. The human cornea has likewise been modeled in vitro using primary cells derived from corneas obtained from cadavers or post‐transplantation. By utilizing a cell's intrinsic ability to maintain its tissue phenotype in a pre‐designed microenvironment containing the required growth factors, physiological temperature, and humidity, tissue‐engineered corneas can be grown and maintained in culture for relatively long periods of time on the scale of weeks to months. Due to its transparency and avascularity, the cornea is an optimal tissue for studies of extracellular matrix and cell‐cell interactions, toxicology and permeability of drugs, and underlying mechanisms of scarring and tissue regeneration. This paper describes methods for the cultivation of corneal keratocytes, fibroblasts, epithelial, and endothelial cells for in vitro applications. We also provide detailed, step‐by‐step protocols for assembling and culturing 3D constructs of the corneal stroma, epithelial‐ and endothelial‐stromal co‐cultures and isolation of extracellular vesicles. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Isolating and culturing human corneal keratocytes and fibroblasts

    Basic Protocol 2: Isolating and culturing human corneal epithelial cells

    Basic Protocol 3: Isolating and culturing human corneal endothelial cells

    Basic Protocol 4: 3D corneal stromal construct assembly

    Basic Protocol 5: 3D corneal epithelial‐stromal construct assembly

    Basic Protocol 6: 3D corneal endothelial‐stromal construct assembly

    Basic Protocol 7: Isolating extracellular vesicles from corneal cell conditioned medium

    Support Protocol: Cryopreserving human corneal fibroblasts, corneal epithelial cells, and corneal endothelial cells

     
    more » « less
  2. Peptide-based helical barrels are a noteworthy building block for hierarchical assembly, with a hydrophobic cavity that can serve as a host for cargo. In this study, disulfide-stapled helical barrels were synthesized containing ligands for metal ions on the hydrophilic face of each amphiphilic peptide helix. The major product of the disulfide-stapling reaction was found to be composed of five amphiphilic peptides, thereby going from a 16-amino-acid peptide to a stapled 80-residue protein in one step. The structure of this pentamer, 5HB1, was optimized in silico, indicating a significant hydrophobic cavity of ~6 Å within a helical barrel. Metal-ion-promoted assembly of the helical barrel building blocks generated higher order assemblies with a three-dimensional (3D) matrix morphology. The matrix was decorated with hydrophobic dyes and His-tagged proteins both before and after assembly, taking advantage of the hydrophobic pocket within the helical barrels and coordination sites within the metal ion-peptide framework. As such, this peptide-based biomaterial has potential for a number of biotechnology applications, including supplying small molecule and protein growth factors during cell and tissue growth within the matrix.

     
    more » « less
  3. null (Ed.)
    Cells in vivo generate mechanical traction on the surrounding 3D extracellular matrix (ECM) and neighboring cells. Such traction and biochemical cues may remodel the matrix, e.g., increase stiffness, which, in turn, influences cell functions and forces. This dynamic reciprocity mediates development and tumorigenesis. Currently, there is no method available to directly quantify single-cell forces and matrix remodeling in 3D. Here, we introduce a method to fulfill this long-standing need. We developed a high-resolution microfabricated sensor that hosts a 3D cell-ECM tissue formed by self-assembly. This sensor measures cell forces and tissue stiffness and can apply mechanical stimulation to the tissue. We measured single and multicellular force dynamics of fibroblasts (3T3), human colon (FET) and lung (A549) cancer cells, and cancer-associated fibroblasts (CAF05) with 1-nN resolution. Single cells show notable force fluctuations in 3D. FET/CAF coculture system, mimicking cancer tumor microenvironment, increased tissue stiffness by three times within 24 hours. 
    more » « less
  4. Abstract

    Engineered tissue models comprise a variety of multiplexed ensembles in which combinations of epithelial, stromal, and immune cells give rise to physiologic functions. Engineering spatiotemporal control of cell–cell and cell–matrix interactions within these 3D multicellular tissues would represent a significant advance for tissue engineering. In this work, a new method, entitled CAMEO (ControlledApoptosis inMulticellular tissues forEngineeredOrganogenesis) enables the noninvasive triggering of controlled apoptosis to eliminate genetically engineered cells from a pre‐established culture. Using this approach, the contribution of stromal cells to the phenotypic stability of primary human hepatocytes is examined. 3D hepatic microtissues, in which fibroblasts can enhance phenotypic stability and accelerate aggregation into spheroids, are found to rely only transiently on fibroblast interaction to support multiple axes of liver function, such as protein secretion and drug detoxification. Due to its modularity, CAMEO has the promise to be readily extendable to other applications that are tied to the complexity of 3D tissue biology, from understanding in vitro organoid models to building artificial tissue grafts.

     
    more » « less
  5. Abstract

    Cells in living tissues are exposed to substantial mechanical forces and constraints imposed by neighboring cells, the extracellular matrix, and external factors. Mechanical forces and physical confinement can drive various cellular responses, including changes in gene expression, cell growth, differentiation, and migration, all of which have important implications in physiological and pathological processes, such as immune cell migration or cancer metastasis. Previous studies have shown that nuclear deformation induced by 3D confinement promotes cell contractility but can also cause DNA damage and changes in chromatin organization, thereby motivating further studies in nuclear mechanobiology. In this protocol, we present a custom‐developed, easy‐to‐use, robust, and low‐cost approach to induce precisely defined physical confinement on cells using agarose pads with micropillars and externally applied weights. We validated the device by confirming nuclear deformation, changes in nuclear area, and cell viability after confinement. The device is suitable for short‐ and long‐term confinement studies and compatible with imaging of both live and fixed samples, thus presenting a versatile approach to studying the impact of 3D cell confinement and nuclear deformation on cellular function. This article contains detailed protocols for the fabrication and use of the confinement device, including live cell imaging and labeling of fixed cells for subsequent analysis. These protocols can be amended for specific applications. © 2023 Wiley Periodicals LLC.

    Basic Protocol 1: Design and fabrication of the confinement device wafer

    Basic Protocol 2: Cell confinement assay

    Support Protocol 1: Fixation and staining of cells after confinement

    Support protocol 2: Live/dead staining of cells during confinement

     
    more » « less