Understanding the radiative and physical structures of inner region of a few 100 pc of active galactic nucleus (AGNs) is important to constrain the causes of their activities. Although the X-ray emission from the Comptonization region/corona and the accretion disc regulates the broad-line emission regions and torus structures, the exact mutual dependency is not understood well. We performed correlation studies for X-ray, mid-infrared, and different components of Balmer emission lines for the selected sample of AGNs. Almost 10 different parameters and their interdependencies were explored in order to understand the underlying astrophysics. We found that the X-ray luminosity has a linear dependency on the various components of broad Balmer emission lines (e.g. L$_{\text{2-10 keV}}\, \propto$ L$^{0.78}_{\text{H}\beta ^{\text{B}}}$) and found a strong dependency on the optical continuum luminosity (L$_{\text{2-10 keV}}\, \propto$ L$^{0.86}_{5100\, \mathring{\rm A}}$). For a selected sample, we also observed a linear dependency between X-ray and mid-infrared luminosity (L$_{\text{2-10 keV}}\, \propto$ L$^{0.74}_{6\, \mu \text{m}}$). A break point was observed in our correlation studies for X-ray power-law index, Γ, and mass of black hole at ∼ log (M/M⊙) = 8.95. Similarly, the relations between Γ and full width at half-maximum (FWHM) of H α and H β broad components show breaks at FWHMH α = 7642 ± 657 km s−1more »
Soft X-ray emission (0.5–2.0 keV) plays a pivotal role in regulating the optical and ultraviolet (UV) emission in the active galactic nuclei (AGNs). We collected a sample of 1811 AGNs from the SDSS database and obtained various parameters of Balmer lines, optical continuum, Mg ii line & UV continuum and studied their dependencies on soft X-ray luminosity. Based on the linear regression analysis, we found that FWHM$_{\rm {Mg\,\,\small {II}}}$ ∝ FWHM$_{\text{H}\beta }^{0.554}$ suggesting that UV emission is arising from a region relatively outside the broad-line region (BLR) associated to the Hβ emission and found a strong correlation between optical and UV luminosities (L$_{\rm {Mg\,\,\small {II}}}$ ∝ $L_{\rm {H}\beta }^{0.822}$). It was noticed that the dependency of optical continuum luminosities on soft excess changes with the redshift (LX ∝ L$^{0.596}_{5100\, \mathring{\rm A}}$ for z < 0.5 and LX ∝ L$^{0.429}_{5100\, \mathring{\rm A}}$ for z > 0.5). The full width at half-maximum components of Hβ and Mg ii core components were found to be virialized and is not affected by the soft excess emission whereas the wings of Mg ii display a dependency. We estimated a relation viz. LX ∝L$^{0.520}_{3000\, \mathring{\rm A}}$ FWHM$^{0.525}_{\rm {Mg\,\,\small {II}}}$ and found to be well in agreement with a proposed more »
- Publication Date:
- NSF-PAR ID:
- 10385304
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 518
- Issue:
- 4
- Page Range or eLocation-ID:
- p. 5705-5717
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT We compile optical and mid-infrared light curves from the time-domain surveys (i.e. CRTS, PTF, ZTF, and ASAS-SN) and Wide-field Infrared Survey Explorer (WISE) archive for a selected sample of active galactic nuclei (AGNs) with Hβ reverberation mapping (RM) measurements. We measure the time lags (and thus torus sizes) of W1 (∼3.4 $\mu$ m) and W2 (∼4.6 $\mu$ m) band light curves relative to the optical one using the MICA method. Through Hβ RM, the sample has well-measured AGN properties, therefore allowing us to reliably constrain the relations between torus sizes and AGN properties. We perform linear regressions for the relations between torus sizes and 5100 Å luminosities ($R\propto L_{5100}^{\beta }$ ) in two cases: β = 0.5 and β set free. The latter case yields β ≈ 0.37 ± 0.028 for both W1 and W2 bands, shallower than the expected value of 0.5, possibly due to the dependence of torus size on accretion rate. For β = 0.5, by combining with the previous K band RM measurements, we obtain the characteristic broad-line region (BLR) and tours sizes following RBLR:RK :RW1:RW2 = 1.0:6.2:9.2:11.2. We investigate the deviations of the W1 and W2 band observed torus sizes from the corresponding best-fitting relations (with β = 0.5) and find that theymore »
-
Abstract We analyze a sample of 25 [Ne
v ] (λ 3426) emission-line galaxies at 1.4 <z < 2.3 using Hubble Space Telescope/Wide Field Camera 3 G102 and G141 grism observations from the CANDELS Lyα Emission at Reionization (CLEAR) survey. [Nev ] emission probes extremely energetic photoionization (creation potential of 97.11 eV) and is often attributed to energetic radiation from active galactic nuclei (AGNs), shocks from supernovae, or an otherwise very hard ionizing spectrum from the stellar continuum. In this work, we use [Nev ] in conjunction with other rest-frame UV/optical emission lines ([Oii ]λ λ 3726, 3729, [Neiii ]λ 3869, Hβ , [Oiii ]λ λ 4959, 5007, Hα +[Nii ]λ λ 6548, 6583, [Sii ]λ λ 6716, 6731), deep (2–7 Ms) X-ray observations (from Chandra), and mid-infrared imaging (from Spitzer) to study the origin of this emission and to place constraints on the nature of the ionizing engine. The majority of the [Nev ]-detected galaxies have properties consistent with ionization from AGNs. However, for our [Nev ]-selected sample, the X-ray luminosities are consistent with local (z ≲ 0.1) X-ray-selected Seyferts, but the [Nev ] luminosities are more consistent with those fromz ∼ 1 X-ray-selected QSOs. The excess [Nev ] emission requires either reduced hard X-rays or a ∼0.1 keV excess. We discuss possible origins of the apparent [Nev ] excess, which could be related to the “soft (X-ray) excess”more » -
ABSTRACT We have measured the wavelength-dependent lags between the X-ray, ultraviolet, and optical bands in the high-accretion rate ($L/L_{\rm Edd}\approx 40{{\ \rm per\ cent}}$) active galactic nucleus (AGN) Mrk 110 during two intensive monitoring campaigns in February and September 2019. After including the 2017 data published by Vincentelli et al., we divided the observations into three intervals with different X-ray luminosities. The first interval has the lowest X-ray luminosity and did not exhibit the U-band excess positive lag, or the X-ray excess negative lag that is seen in most AGNs. However, these excess lags are seen in the two subsequent intervals of higher X-ray luminosity. Although the data are limited, the excess lags appear to scale with X-ray luminosity. Our modelling shows that lags expected from reprocessing of X-rays by the accretion disc vary hardly at all with increasing luminosity. Therefore, as the U-band excess almost certainly arises from Balmer-continuum emission from the broad-line region (BLR), we attribute these lag changes to changes in the contribution from the BLR. The change is easily explained by the usual increase in the inner radius of the BLR with increasing ionizing luminosity.
-
ABSTRACT We report the results of long-term reverberation mapping campaigns of the nearby active galactic nuclei (AGNs) NGC 4151, spanning from 1994 to 2022, based on archived observations of the FAST Spectrograph Publicly Archived Programs and our new observations with the 2.3 m telescope at the Wyoming Infrared Observatory. We reduce and calibrate all the spectra in a consistent way, and derive light curves of the broad H β line and 5100 Å continuum. Continuum light curves are also constructed using public archival photometric data to increase sampling cadences. We subtract the host galaxy contamination using Hubble Space Telescope imaging to correct fluxes of the calibrated light curves. Utilizing the long-term archival photometric data, we complete the absolute flux-calibration of the AGN continuum. We find that the H β time delays are correlated with the 5100 Å luminosities as $\tau _{\rm H\beta }\propto L_{5100}^{0.46\pm 0.16}$. This is remarkably consistent with Bentz et al. (2013)’s global size–luminosity relationship of AGNs. Moreover, the data sets for five of the seasons allow us to obtain the velocity-resolved delays of the H β line, showing diverse structures (outflows, inflows, and discs). Combining our results with previous independent measurements, we find the measured dynamics of the H β broad-line region (BLR) are possiblymore »