skip to main content

Title: Turbulent Reacceleration of Streaming Cosmic Rays

Subsonic, compressive turbulence transfers energy to cosmic rays (CRs), a process known as nonresonant reacceleration. It is often invoked to explain the observed ratios of primary to secondary CRs at ∼GeV energies, assuming wholly diffusive CR transport. However, such estimates ignore the impact of CR self-confinement and streaming. We study these issues in stirring box magnetohydrodynamic (MHD) simulations using Athena++, with field-aligned diffusive and streaming CR transport. For diffusion only, we find CR reacceleration rates in good agreement with analytic predictions. When streaming is included, reacceleration rates depend on plasmaβ. Due to streaming-modified phase shifts between CR and gas variables, they are slower than canonical reacceleration rates in low-βenvironments like the interstellar medium but remain unchanged in high-βenvironments like the intracluster medium. We also quantify the streaming energy-loss rate in our simulations. For sub-Alfvénic turbulence, it is resolution dependent (hence unconverged in large-scale simulations) and heavily suppressed compared to the isotropic loss ratevA· ∇PCR/PCRvA/L0, due to misalignment between the mean field and isotropic CR gradients. Unlike acceleration efficiencies, CR losses are almost independent of magnetic field strength overβ∼ 1–100 and are, therefore, not the primary factor behind lower acceleration rates when streaming is included. While this paper is primarily concerned with how turbulence affects CRs, in a follow-up paper we consider how CRs affect turbulence by diverting energy from the MHD cascade, altering the pathway to gas heating and steepening the turbulent spectrum.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Medium: X Size: Article No. 65
["Article No. 65"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While it is well known that cosmic rays (CRs) can gain energy from turbulence via second-order Fermi acceleration, how this energy transfer affects the turbulent cascade remains largely unexplored. Here, we show that damping and steepening of the compressive turbulent power spectrum are expected once the damping timetdampρv2/ĖCRECR1becomes comparable to the turbulent cascade time. Magnetohydrodynamic simulations of stirred compressive turbulence in a gas-CR fluid with diffusive CR transport show clear imprints of CR-induced damping, saturating atĖCRϵ˜, whereϵ˜is the turbulent energy input rate. In that case, almost all of the energy in large-scale motions is absorbed by CRs and does not cascade down to grid scale. Through a Hodge–Helmholtz decomposition, we confirm that purely compressive forcing can generate significant solenoidal motions, and we find preferential CR damping of the compressive component in simulations with diffusion and streaming, rendering small-scale turbulence largely solenoidal, with implications for thermal instability and proposed resonant scattering ofE≳ 300 GeV CRs by fast modes. When CR transport is streaming dominated, CRs also damp large-scale motions, with kinetic energy reduced by up to 1 order of magnitude in realisticECREgscenarios, but turbulence (with a reduced amplitude) still cascades down to small scales with the same power spectrum. Such large-scale damping implies that turbulent velocities obtained from the observed velocity dispersion may significantly underestimate turbulent forcing rates, i.e.,ϵ˜ρv3/L.

    more » « less

    We present the first simulations evolving resolved spectra of cosmic rays (CRs) from MeV–TeV energies (including electrons, positrons, (anti)protons, and heavier nuclei), in live kinetic-magnetohydrodynamics galaxy simulations with star formation and feedback. We utilize new numerical methods including terms often neglected in historical models, comparing Milky Way analogues with phenomenological scattering coefficients ν to Solar-neighbourhood [Local interstellar medium (LISM)] observations (spectra, B/C, e+/e−, $\mathrm{\bar{p}}/\mathrm{p}$, 10Be/9Be, ionization, and γ-rays). We show it is possible to reproduce observations with simple single-power-law injection and scattering coefficients (scaling with rigidity R), similar to previous (non-dynamical) calculations. We also find: (1) The circumgalactic medium in realistic galaxies necessarily imposes an $\sim 10\,$ kpc CR scattering halo, influencing the required ν(R). (2) Increasing the normalization of ν(R) re-normalizes CR secondary spectra but also changes primary spectral slopes, owing to source distribution and loss effects. (3) Diffusive/turbulent reacceleration is unimportant and generally sub-dominant to gyroresonant/streaming losses, which are sub-dominant to adiabatic/convective terms dominated by $\sim 0.1-1\,$ kpc turbulent/fountain motions. (4) CR spectra vary considerably across galaxies; certain features can arise from local structure rather than transport physics. (5) Systematic variation in CR ionization rates between LISM and molecular clouds (or Galactic position) arises naturally without invoking alternative sources. (6) Abundances of CNO nuclei require most CR acceleration occurs around when reverse shocks form in SNe, not in OB wind bubbles or later Sedov–Taylor stages of SNe remnants.

    more » « less

    We investigate how cosmic rays (CRs) affect thermal and hydrostatic stability of circumgalactic (CGM) gas, in simulations with both CR streaming and diffusion. Local thermal instability can be suppressed by CR-driven entropy mode propagation, in accordance with previous analytic work. However, there is only a narrow parameter regime where this operates, before CRs overheat the background gas. As mass dropout from thermal instability causes the background density and hence plasma β ≡ Pg/PB to fall, the CGM becomes globally unstable. At the cool disc-to-hot−halo interface, a sharp drop in density boosts Alfven speeds and CR gradients, driving a transition from diffusive to streaming transport. CR forces and heating strengthen, while countervailing gravitational forces and radiative cooling weaken, resulting in a loss of both hydrostatic and thermal equilibrium. In lower β haloes, CR heating drives a hot, single-phase diffuse wind with velocities v ∝ (theat/tff)−1, which exceeds the escape velocity when theat/tff ≲ 0.4. In higher β haloes, where the Alfven Mach number is higher, CR forces drive multi-phase winds with cool, dense fountain flows and significant turbulence. These flows are CR dominated due to ‘trapping’ of CRs by weak transverse B-fields, and have the highest mass loading factors. Thus, local thermal instability can result in winds or fountain flows where either the heat or momentum input of CRs dominates.

    more » « less

    Phenomenological models of cosmic ray (CR) transport in the Milky Way can reproduce a wide range of observations assuming that CRs scatter off of magnetic-field fluctuations with spectrum ∝ k−δ and δ ∼ [1.4, 1.67]. We study the extent to which such models can be reconciled with current microphysical theories of CR transport, specifically self-confinement due to the streaming instability and/or extrinsic turbulence due to a cascade of magnetohydrodynamic (MHD) fast modes. We first review why it is that on their own neither theory is compatible with observations. We then highlight that CR transport is a strong function of local plasma conditions in the multiphase interstellar medium, and may be diffusive due to turbulence in some regions and streaming due to self-confinement in others. A multiphase combination of scattering mechanisms can in principle reproduce the main trends in the proton spectrum and the boron-to-carbon ratio. However, models with a combination of scattering by self-excited waves and fast-mode turbulence require significant fine-tuning due to fast-mode damping, unlike phenomenological models that assume undamped Kolmogorov turbulence. The assumption that fast modes follow a weak cascade is also not well justified theoretically, as the weak cascade is suppressed by wave steepening and weak-shock dissipation even in subsonic turbulence. These issues suggest that there may be a significant theoretical gap in our understanding of MHD turbulence. We discuss a few topics at the frontier of MHD turbulence theory that bear on this (possible) gap and that may be relevant for CR scattering.

    more » « less

    Many recent numerical studies have argued that cosmic rays (CRs) from supernovae (SNe) or active galactic nuclei (AGNs) could play a crucial role in galaxy formation, in particular by establishing a CR-pressure-dominated circumgalactic medium (CGM). But explicit CR-magnetohydrodynamics (CR-MHD) remains computationally expensive, and it is not clear whether those results can be applied to simulations that do not explicitly treat magnetic fields or resolved interstellar medium phase structure. We therefore present an intentionally extremely simplified ‘sub-grid’ model for CRs, which attempts to capture the key qualitative behaviors of greatest interest for those interested in simulations or semi-analytical models including some approximate CR effects on galactic (≳ kpc) scales, while imposing negligible computational overhead. The model is numerically akin to some recently developed sub-grid models for radiative feedback, and allows for a simple constant parametrization of the CR diffusivity and/or streaming speed; it allows for an arbitrary distribution of sources (proportional to black hole accretion rates or star–particle SNe rates or gas/galaxy star formation rates), and interpolates between the limits where CRs escape the galaxies with negligible losses and those where CRs lose most of their energy catastrophically before escape (relevant in e.g. starburst galaxies). The numerical equations are solved trivially alongside gravity in most codes. We compare this to explicit CR-MHD simulations and discuss where the (many) sub-grid approximations break down, and what drives the major sources of uncertainty.

    more » « less