skip to main content

Title: Anticipation across modalities in children and adults: Relating anticipatory alpha rhythm lateralization, reaction time, and executive function

The development of the ability to anticipate—as manifested by preparatory actions and neural activation related to the expectation of an upcoming stimulus—may play a key role in the ontogeny of cognitive skills more broadly. This preregistered study examined anticipatory brain potentials and behavioral responses (reaction time; RT) to anticipated target stimuli in relation to individual differences in the ability to use goals to direct action (as indexed by measures of executive function; EF). A cross‐sectional investigation was conducted in 40 adults (aged 18–25 years) and 40 children (aged 6–8 years) to examine the association of changes in the amplitude of modality‐specific alpha‐range rhythms in the electroencephalogram (EEG) during anticipation of lateralized visual, tactile, or auditory stimuli with inter‐ and intraindividual variation in RT and EF. Children and adults exhibited contralateral anticipatory reductions in the mu rhythm and the visual alpha rhythm for tactile and visual anticipation, respectively, indicating modality and spatially specific attention allocation. Variability in within‐subject anticipatory alpha lateralization (the difference between contralateral and ipsilateral alpha power) was related to single‐trial RT. This relation was more prominent in adults than in children, and was not apparent for auditory stimuli. Multilevel models indicated that interindividual differences in anticipatory mu rhythm lateralization contributed to the significant association with variability in EF, but this was not the case for visual or auditory alpha rhythms. Exploratory microstate analyses were undertaken to cluster global field power (GFP) into a distribution‐free temporal analysis examining developmental differences across samples and in relation to RT and EF. Anticipation is suggested as a developmental bridge construct connecting neuroscience, behavior, and cognition, with anticipatory EEG oscillations being discussed as quantifiable and potentially malleable indicators of stimulus prediction.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Date Published:
Journal Name:
Developmental Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Classic work using the stop-signal task has shown that humans can use inhibitory control to cancel already initiated movements. Subsequent work revealed that inhibitory control can be proactively recruited in anticipation of a potential stop-signal, thereby increasing the likelihood of successful movement cancellation. However, the exact neurophysiological effects of proactive inhibitory control on the motor system are still unclear. On the basis of classic views of sensorimotor β-band activity, as well as recent findings demonstrating the burst-like nature of this signal, we recently proposed that proactive inhibitory control is implemented by influencing the rate of sensorimotor β-bursts during movement initiation. Here, we directly tested this hypothesis using scalp EEG recordings of β-band activity in 41 healthy human adults during a bimanual RT task. By comparing motor responses made in two different contexts—during blocks with or without stop-signals—we found that premovement β-burst rates over both contralateral and ipsilateral sensorimotor areas were increased in stop-signal blocks compared to pure-go blocks. Moreover, the degree of this burst rate difference indexed the behavioral implementation of proactive inhibition (i.e., the degree of anticipatory response slowing in the stop-signal blocks). Finally, exploratory analyses showed that these condition differences were explained by a significant increase in β bursting that was already present during baseline period before the movement initiation signal. Together, this suggests that the strategic deployment of proactive inhibitory motor control is implemented by upregulating the tonic inhibition of the motor system, signified by increased sensorimotor β-bursting both before and after signals to initiate a movement. 
    more » « less
  2. Abstract

    Rhythm perception depends on the ability to predict the onset of rhythmic events. Previous studies indicate beta band modulation is involved in predicting the onset of auditory rhythmic events (Fujioka et al., 2009, 2012; Snyder & Large, 2005). We sought to determine if similar processes are recruited for prediction of visual rhythms by investigating whether beta band activity plays a role in a modality‐dependent manner for rhythm perception. We looked at electroencephalography time–frequency neural correlates of prediction using an omission paradigm with auditory and visual rhythms. By using omissions, we can separate out predictive timing activity from stimulus‐driven activity. We hypothesized that there would be modality‐independent markers of rhythm prediction in induced beta band oscillatory activity, and our results support this hypothesis. We find induced and evoked predictive timing in both auditory and visual modalities. Additionally, we performed an exploratory‐independent components‐based spatial clustering analysis, and describe all resulting clusters. This analysis reveals that there may be overlapping networks of predictive beta activity based on common activation in the parietal and right frontal regions, auditory‐specific predictive beta in bilateral sensorimotor regions, and visually specific predictive beta in midline central, and bilateral temporal/parietal regions. This analysis also shows evoked predictive beta activity in the left sensorimotor region specific to auditory rhythms and implicates modality‐dependent networks for auditory and visual rhythm perception.

    more » « less
  3. Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by impairments in social perception and communication. Growing evidence suggests that the relationship between deficits in social perception and ASD may extend into the neurotypical population. In electroencephalography (EEG), high autism-spectrum traits in both ASD and neurotypical samples are associated with changes to the mu rhythm, an alpha-band (8–12 Hz) oscillation measured over sensorimotor cortex which typically shows reductions in spectral power during both one’s own movements and observation of others’ actions. This mu suppression is thought to reflect integration of perceptual and motor representations for understanding of others’ mental states, which may be disrupted in individuals with autism-spectrum traits. However, because spectral power is usually quantified at the group level, it has limited usefulness for characterizing individual variation in the mu rhythm, particularly with respect to autism-spectrum traits. Instead, individual peak frequency may provide a better measure of mu rhythm variability across participants. Previous developmental studies have linked ASD to slowing of individual peak frequency in the alpha band, or peak alpha frequency (PAF), predominantly associated with selective attention. Yet individual variability in the peak mu frequency (PMF) remains largely unexplored, particularly with respect to autism-spectrum traits. Here we quantified peak frequency of occipitoparietal alpha and sensorimotor mu rhythms across neurotypical individuals as a function of autism-spectrum traits. High-density 128-channel EEG data were collected from 60 participants while they completed two tasks previously reported to reliably index the sensorimotor mu rhythm: motor execution (bimanual finger tapping) and action observation (viewing of whole-body human movements). We found that individual measurement in the peak oscillatory frequency of the mu rhythm was highly reliable within participants, was not driven by resting vs. task states, and showed good correlation across action execution and observation tasks. Within our neurotypical sample, higher autism-spectrum traits were associated with slowing of the PMF, as predicted. This effect was not likely explained by volume conduction of the occipitoparietal PAF associated with attention. Together, these data support individual peak oscillatory alpha-band frequency as a correlate of autism-spectrum traits, warranting further research with larger samples and clinical populations. 
    more » « less
  4. Abstract Context In children, growth hormone (GH) pulses occur after sleep onset in association with slow-wave sleep (SWS). There have been no studies in children to quantify the effect of disrupted sleep on GH secretion. Objective This study aimed to investigate the effect of acute sleep disruption on GH secretion in pubertal children. Methods Fourteen healthy individuals (aged 11.3-14.1 years) were randomly assigned to 2 overnight polysomnographic studies, 1 with and 1 without SWS disruption via auditory stimuli, with frequent blood sampling to measure GH. Results Auditory stimuli delivered during the disrupted sleep night caused a 40.0 ± 7.8% decrease in SWS. On SWS-disrupted sleep nights, the rate of GH pulses during N2 sleep was significantly lower than during SWS (IRR = 0.56; 95% CI, 0.32-0.97). There were no differences in GH pulse rates during the various sleep stages or wakefulness in disrupted compared with undisrupted sleep nights. SWS disruption had no effect on GH pulse amplitude and frequency or basal GH secretion. Conclusion In pubertal children, GH pulses were temporally associated with episodes of SWS. Acute disruption of sleep via auditory tones during SWS did not alter GH secretion. These results indicate that SWS may not be a direct stimulus of GH secretion. 
    more » « less
  5. Neural entrainment to musical rhythm is thought to underlie the perception and production of music. In aging populations, the strength of neural entrainment to rhythm has been found to be attenuated, particularly during attentive listening to auditory streams. However, previous studies on neural entrainment to rhythm and aging have often employed artificial auditory rhythms or limited pieces of recorded, naturalistic music, failing to account for the diversity of rhythmic structures found in natural music. As part of larger project assessing a novel music-based intervention for healthy aging, we investigated neural entrainment to musical rhythms in the electroencephalogram (EEG) while participants listened to self-selected musical recordings across a sample of younger and older adults. We specifically measured neural entrainment to the level of musical pulse—quantified here as the phase-locking value (PLV)—after normalizing the PLVs to each musical recording’s detected pulse frequency. As predicted, we observed strong neural phase-locking to musical pulse, and to the sub-harmonic and harmonic levels of musical meter. Overall, PLVs were not significantly different between older and younger adults. This preserved neural entrainment to musical pulse and rhythm could support the design of music-based interventions that aim to modulate endogenous brain activity via self-selected music for healthy cognitive aging. 
    more » « less