skip to main content


Title: Algorithmic lifestyle optimization
Abstract Objective

A hallmark of personalized medicine and nutrition is to identify effective treatment plans at the individual level. Lifestyle interventions (LIs), from diet to exercise, can have a significant effect over time, especially in the case of food intolerances and allergies. The large set of candidate interventions, make it difficult to evaluate which intervention plan would be more favorable for any given individual. In this study, we aimed to develop a method for rapid identification of favorable LIs for a given individual.

Materials and methods

We have developed a method, algorithmic lifestyle optimization (ALO), for rapid identification of effective LIs. At its core, a group testing algorithm identifies the effectiveness of each intervention efficiently, within the context of its pertinent group.

Results

Evaluations on synthetic and real data show that ALO is robust to noise, data size, and data heterogeneity. Compared to the standard of practice techniques, such as the standard elimination diet (SED), it identifies the effective LIs 58.9%–68.4% faster when used to discover an individual’s food intolerances and allergies to 19–56 foods.

Discussion

ALO achieves its superior performance by: (1) grouping multiple LIs together optimally from prior statistics, and (2) adapting the groupings of LIs from the individual’s subsequent responses. Future extensions to ALO should enable incorporating nutritional constraints.

Conclusion

ALO provides a new approach for the discovery of effective interventions in nutrition and medicine, leading to better intervention plans faster and with less inconvenience to the patient compared to SED.

 
more » « less
NSF-PAR ID:
10385414
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the American Medical Informatics Association
Volume:
30
Issue:
1
ISSN:
1067-5027
Format(s):
Medium: X Size: p. 38-45
Size(s):
["p. 38-45"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We developed a model to compare the impacts of different lifestyle interventions among prediabetes individuals and to identify the optimal age groups for such interventions. A stochastic simulation was developed to replicate the prediabetes and diabetes trends (1997–2010) in the U.S. adult population. We then simulated the population-wide impacts of three lifestyle diabetes prevention programs, i.e., the Diabetes Prevention Program (DPP), DPP-YMCA, and the Healthy Living Partnerships to Prevent Diabetes (HELP-PD), over a course of 10, 15 and 30 years. Our model replicated the temporal trends of diabetes in the U.S. adult population. Compared to no intervention, the diabetes incidence declined 0.3 per 1,000 by DPP, 0.2 by DPP-YMCA, and 0.4 by HELP-PD over the 15-year period. Our simulations identified HELP-PD as the most cost-effective intervention, which achieved the highest 10-year savings of $38 billion for those aged 25–65, assuming all eligible individuals participate in the intervention and considering intervention achievement rates. Our model simulates the diabetes trends in the U.S. population based on individual-level longitudinal data. However, it may be used to identify the optimal intervention for different subgroups in defined populations.

     
    more » « less
  2. Abstract

    Age and size at maturity are key life‐history components, yet the proximate underpinnings that mediate intra‐ and interspecific variation in life history remain poorly understood. We studied the proximate underpinnings of species differences and nutritionally plastic variation in adult size and development time in four species of dung beetles. Specifically, we investigated how variation in insect growth mediates adult size variation, tested whether fast juvenile growth trades‐off with developmental stability in adult morphology and quantified plastic responses of digestive systems to variation in food quality. Contrary to the common size–development time trade‐off, the largest species exhibited by far the shortest development time. Correspondingly, species diverged strongly in the shape of growth trajectories. Nutritionally plastic adjustments to growth were qualitatively similar between species but differed in magnitude. Although we expected rapid growth to induce developmental costs, neither instantaneous growth rates nor the duration of larval growth were related to developmental stability in the adult. This renders the putative costs of rapid growth enigmatic. We further found that larvae that encounter a challenging diet develop a larger midgut and digest more slowly than animals reared on a more nutritious diet. These data are consistent with the hypothesis that larvae invest into a more effective digestive system when exposed to low‐quality nutrition, but suggest that species may diverge readily in their reliance on these mechanisms. More generally, our data highlight the complex, and often hidden, relationships between immature growth and age and size at maturation even in ecologically similar species.

     
    more » « less
  3. Robinson, Peter (Ed.)
    Abstract Motivation

    Identifying cis-acting genetic variants associated with gene expression levels—an analysis commonly referred to as expression quantitative trait loci (eQTLs) mapping—is an important first step toward understanding the genetic determinant of gene expression variation. Successful eQTL mapping requires effective control of confounding factors. A common method for confounding effects control in eQTL mapping studies is the probabilistic estimation of expression residual (PEER) analysis. PEER analysis extracts PEER factors to serve as surrogates for confounding factors, which is further included in the subsequent eQTL mapping analysis. However, it is computationally challenging to determine the optimal number of PEER factors used for eQTL mapping. In particular, the standard approach to determine the optimal number of PEER factors examines one number at a time and chooses a number that optimizes eQTLs discovery. Unfortunately, this standard approach involves multiple repetitive eQTL mapping procedures that are computationally expensive, restricting its use in large-scale eQTL mapping studies that being collected today.

    Results

    Here, we present a simple and computationally scalable alternative, Effect size Correlation for COnfounding determination (ECCO), to determine the optimal number of PEER factors used for eQTL mapping studies. Instead of performing repetitive eQTL mapping, ECCO jointly applies differential expression analysis and Mendelian randomization analysis, leading to substantial computational savings. In simulations and real data applications, we show that ECCO identifies a similar number of PEER factors required for eQTL mapping analysis as the standard approach but is two orders of magnitude faster. The computational scalability of ECCO allows for optimized eQTL discovery across 48 GTEx tissues for the first time, yielding an overall 5.89% power gain on the number of eQTL harboring genes (eGenes) discovered as compared to the previous GTEx recommendation that does not attempt to determine tissue-specific optimal number of PEER factors.

    Availabilityand implementation

    Our method is implemented in the ECCO software, which, along with its GTEx mapping results, is freely available at www.xzlab.org/software.html. All R scripts used in this study are also available at this site.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. null (Ed.)
    ABSTRACT Water security is a powerful concept that is still in its early days in the field of nutrition. Given the prevalence and severity of water issues and the many interconnections between water and nutrition, we argue that water security deserves attention commensurate with its importance to human nutrition and health. To this end, we first give a brief introduction to water insecurity and discuss its conceptualization in terms of availability, access, use, and stability. We then lay out the empirical grounding for its assessment. Parallels to the food-security literature are drawn throughout, both because the concepts are analogous and food security is familiar to the nutrition community. Specifically, we review the evolution of scales to measure water and food security and compare select characteristics. We then review the burgeoning evidence for the causes and consequences of water insecurity and conclude with 4 recommendations: 1) collect more water-insecurity data (i.e., on prevalence, causes, consequences, and intervention impacts); 2) collect better data on water insecurity (i.e., measure it concurrently with food security and other nutritional indicators, measure intrahousehold variation, and establish baseline indicators of both water and nutrition before interventions are implemented); 3) consider food and water issues jointly in policy and practice (e.g., establish linkages and possibilities for joint interventions, recognize the environmental footprint of nutritional guidelines, strengthen the nutrition sensitivity of water-management practices, and use experience-based scales for improving governance and regulation across food and water systems); and 4) make findings easily available so that they can be used by the media, community organizations, and other scientists for advocacy and in governance (e.g., tracking progress towards development goals and holding implementers accountable). As recognition of the importance of water security grows, we hope that so too will the prioritization of water in nutrition research, funding, and policy. 
    more » « less
  5. Abstract

    Smallholder farmers are some of the poorest and most food insecure people on Earth. Their high nutritional and economic reliance on home‐grown produce makes them particularly vulnerable to environmental stressors such as pollinator loss or climate change which threaten agricultural productivity. Improving smallholder agriculture in a way that is environmentally sustainable and resilient to climate change is a key challenge of the 21st century.

    Ecological intensification, whereby ecosystem services are managed to increase agricultural productivity, is a promising solution for smallholders. However, smallholder farms are complex socio‐ecological systems with a range of social, ecological and environmental factors interacting to influence ecosystem service provisioning. To truly understand the functioning of a smallholder farm and identify the most effective management options to support household food and nutrition security, a holistic, systems‐based understanding is required.

    In this paper, we propose a network approach to understand, visualise and model the complex interactions occurring among wild species, crops and people on smallholder farms. Specifically, we demonstrate how networks may be used to (a) identify wild species with a key role in supporting, delivering or increasing the resilience of an ecosystem service; (b) quantify the value of an ecosystem service in a way that is relevant to the food and nutrition security of smallholders; and (c) understand the social interactions that influence the management of shared ecosystem services.

    Using a case study based on data from rural Nepal, we demonstrate how this framework can be used to connect wild plants, pollinators and crops to key nutrients consumed by humans. This allows us to quantify the nutritional value of an ecosystem service and identify the wild plants and pollinators involved in its provision, as well as providing a framework to predict the effects of environmental change on human nutrition.

    Our framework identifies mechanistic links between ecosystem services and the nutrients consumed by smallholder farmers and highlights social factors that may influence the management of these services. Applying this framework to smallholder farms in a range of socio‐ecological contexts may provide new, sustainable and equitable solutions to smallholder food and nutrition security.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less