Abstract In the last several years, there has been a surge in the development of machine learning potential (MLP) models for describing molecular systems. We are interested in a particular area of this field — the training of system‐specific MLPs for reactive systems — with the goal of using these MLPs to accelerate free energy simulations of chemical and enzyme reactions. To help new members in our labs become familiar with the basic techniques, we have put together a self‐guided Colab tutorial (https://cc-ats.github.io/mlp_tutorial/), which we expect to be also useful to other young researchers in the community. Our tutorial begins with the introduction of simple feedforward neural network (FNN) and kernel‐based (using Gaussian process regression, GPR) models by fitting the two‐dimensional Müller‐Brown potential. Subsequently, two simple descriptors are presented for extracting features of molecular systems: symmetry functions (including the ANI variant) and embedding neural networks (such as DeepPot‐SE). Lastly, these features will be fed into FNN and GPR models to reproduce the energies and forces for the molecular configurations in a Claisen rearrangement reaction.
more »
« less
PyXtal_FF: a python library for automated force field generation
Abstract We present PyXtal_FF—a package based on Python programming language—for developing machine learning potentials (MLPs). The aim of PyXtal_FF is to promote the application of atomistic simulations through providing several choices of atom-centered descriptors and machine learning regressions in one platform. Based on the given choice of descriptors (including the atom-centered symmetry functions, embedded atom density, SO4 bispectrum, and smooth SO3 power spectrum), PyXtal_FF can train MLPs with either generalized linear regression or neural network models, by simultaneously minimizing the errors of energy/forces/stress tensors in comparison with the data from ab-initio simulations. The trained MLP model from PyXtal_FF is interfaced with the Atomic Simulation Environment (ASE) package, which allows different types of light-weight simulations such as geometry optimization, molecular dynamics simulation, and physical properties prediction. Finally, we will illustrate the performance of PyXtal_FF by applying it to investigate several material systems, including the bulk SiO 2 , high entropy alloy NbMoTaW, and elemental Pt for general purposes. Full documentation of PyXtal_FF is available at https://pyxtal-ff.readthedocs.io .
more »
« less
- PAR ID:
- 10385462
- Date Published:
- Journal Name:
- Machine Learning: Science and Technology
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2632-2153
- Page Range / eLocation ID:
- 027001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Machine learning represents a milestone in data-driven research, including material informatics, robotics, and computer-aided drug discovery. With the continuously growing virtual and synthetically available chemical space, efficient and robust quantitative structure–activity relationship (QSAR) methods are required to uncover molecules with desired properties. Herein, we propose variable-length-array SMILES-based (VLA-SMILES) structural descriptors that expand conventional SMILES descriptors widely used in machine learning. This structural representation extends the family of numerically coded SMILES, particularly binary SMILES, to expedite the discovery of new deep learning QSAR models with high predictive ability. VLA-SMILES descriptors were shown to speed up the training of QSAR models based on multilayer perceptron (MLP) with optimized backpropagation (ATransformedBP), resilient propagation (iRPROP‒), and Adam optimization learning algorithms featuring rational train–test splitting, while improving the predictive ability toward the more compute-intensive binary SMILES representation format. All the tested MLPs under the same length-array-based SMILES descriptors showed similar predictive ability and convergence rate of training in combination with the considered learning procedures. Validation with the Kennard–Stone train–test splitting based on the structural descriptor similarity metrics was found more effective than the partitioning with the ranking by activity based on biological activity values metrics for the entire set of VLA-SMILES featured QSAR. Robustness and the predictive ability of MLP models based on VLA-SMILES were assessed via the method of QSAR parametric model validation. In addition, the method of the statistical H0 hypothesis testing of the linear regression between real and observed activities based on the F2,n−2 -criteria was used for predictability estimation among VLA-SMILES featured QSAR-MLPs (with n being the volume of the testing set). Both approaches of QSAR parametric model validation and statistical hypothesis testing were found to correlate when used for the quantitative evaluation of predictabilities of the designed QSAR models with VLA-SMILES descriptors.more » « less
-
The rapid development and large body of literature on machine learning potentials (MLPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The spirit of this review is to help such researchers by serving as a practical, accessible guide to the state-of-the-art in MLPs. This review paper covers a broad range of topics related to MLPs, including (i) central aspects of how and why MLPs are enablers of many exciting advancements in molecular modeling, (ii) the main underpinnings of different types of MLPs, including their basic structure and formalism, (iii) the potentially transformative impact of universal MLPs for both organic and inorganic systems, including an overview of the most recent advances, capabilities, downsides, and potential applications of this nascent class of MLPs, (iv) a practical guide for estimating and understanding the execution speed of MLPs, including guidance for users based on hardware availability, type of MLP used, and prospective simulation size and time, (v) a manual for what MLP a user should choose for a given application by considering hardware resources, speed requirements, energy and force accuracy requirements, as well as guidance for choosing pre-trained potentials or fitting a new potential from scratch, (vi) discussion around MLP infrastructure, including sources of training data, pre-trained potentials, and hardware resources for training, (vii) summary of some key limitations of present MLPs and current approaches to mitigate such limitations, including methods of including long-range interactions, handling magnetic systems, and treatment of excited states, and finally (viii) we finish with some more speculative thoughts on what the future holds for the development and application of MLPs over the next 3-10+ years.more » « less
-
MLMOD is a software package for incorporating machine learning approaches and models into simulations of microscale mechanics and molecular dynamics in LAMMPS. Recent machine learning approaches provide promising data-driven approaches for learning representations for system behaviors from experimental data and high fidelity simulations. The package facilitates learning and using data-driven models for (i) dynamics of the system at larger spatial-temporal scales (ii) interactions between system components, (iii) features yielding coarser degrees of freedom, and (iv) features for new quantities of interest characterizing system behaviors. MLMOD provides hooks in LAMMPS for (i) modeling dynamics and time-step integration, (ii) modeling interactions, and (iii) computing quantities of interest characterizing system states. The package allows for use of machine learning methods with general model classes including Neural Networks, Gaussian Process Regression, Kernel Models, and other approaches. Here we discuss our prototype C++/Python package, aims, and example usage. The package is integrated currently with the mesocale and molecular dynamics simulation package LAMMPS and PyTorch.more » « less
-
Physics-based, atom-centered machine learning (ML) representations have been instrumental to the effective integration of ML within the atomistic simulation community. Many of these representations build off the idea of atoms as having spherical, or isotropic, interactions. In many communities, there is often a need to represent groups of atoms, either to increase the computational efficiency of simulation via coarse-graining or to understand molecular influences on system behavior. In such cases, atom-centered representations will have limited utility, as groups of atoms may not be well-approximated as spheres. In this work, we extend the popular Smooth Overlap of Atomic Positions (SOAP) ML representation for systems consisting of non-spherical anisotropic particles or clusters of atoms. We show the power of this anisotropic extension of SOAP, which we deem AniSOAP, in accurately characterizing liquid crystal systems and predicting the energetics of Gay–Berne ellipsoids and coarse-grained benzene crystals. With our study of these prototypical anisotropic systems, we derive fundamental insights on how molecular shape influences mesoscale behavior and explain how to reincorporate important atom–atom interactions typically not captured by coarse-grained models. Moving forward, we propose AniSOAP as a flexible, unified framework for coarse-graining in complex, multiscale simulation.more » « less
An official website of the United States government

