skip to main content


Title: Tailored porous framework materials for advancing lithium–sulfur batteries
Despite great promise as next-generation high-capacity energy storage devices, lithium–sulfur batteries still face technical challenges in long-term cyclability. With their porous structures and facile synthesis, metal–organic frameworks (MOFs) are tunable platforms for understanding polysulfide redox and can serve as effective sulfur hosts for lithium–sulfur batteries. This feature article describes our design strategies to tailor MOF properties such as polysulfide affinity, ionic conductivity, and porosity for promoting active material utilization and charge transport efficiency. We also present engineering approaches for implementing MOF-based sulfur cathodes for lithium–sulfur batteries with high volumetric density and under low temperature operation. Our studies provide fundamental insights into sulfur–host interactions and polysulfide electrochemistry in the presence of porous matrices, inspiring future designs of advanced batteries.  more » « less
Award ID(s):
1945114
PAR ID:
10385541
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemical Communications
Volume:
58
Issue:
25
ISSN:
1359-7345
Page Range / eLocation ID:
4005 to 4015
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lithium–sulfur batteries are promising candidates for next‐generation energy storage devices due to their outstanding theoretical energy density. However, they suffer from low sulfur utilization and poor cyclability, greatly limiting their practical implementation. Herein, we adopted a phosphate‐functionalized zirconium metal–organic framework (Zr‐MOF) as a sulfur host. With their porous structure, remarkable electrochemical stability, and synthetic versatility, Zr‐MOFs present great potential in preventing soluble polysulfides from leaching. Phosphate groups were introduced to the framework post‐synthetically since they have shown a strong affinity towards lithium polysulfides and an ability to facilitate Li ion transport. The successful incorporation of phosphate in MOF‐808 was demonstrated by a series of techniques including infrared spectroscopy, solid‐state nuclear magnetic resonance spectroscopy, and X‐ray pair distribution function analysis. When employed in batteries, phosphate‐functionalized Zr‐MOF (MOF‐808‐PO4) exhibits significantly enhanced sulfur utilization and ion diffusion compared to the parent framework, leading to higher capacity and rate capability. The improved capacity retention and inhibited self‐discharge rate also demonstrate effective polysulfide encapsulation utilizing MOF‐808‐PO4. Furthermore, we explored their potential towards high‐density batteries by examining the cycling performance at various sulfur loadings. Our approach to correlate structure with function using hybrid inorganic–organic materials offers new chemical design strategies for advancing battery materials.

     
    more » « less
  2. Metal–organic frameworks (MOFs) have been an area of intense research for their high porosity and synthetic tunability, which afford them controllable physical and chemical properties for various applications. In this study, we demonstrate that functionalized MOFs can be used to mitigate the so-called polysulfide shuttle effect in lithium–sulfur batteries, a promising next-generation energy storage device. UiO-66-OH, a zirconium-based MOF with 2-hydroxyterephthalic acid, was functionalized with a phosphorus chloride species that was subsequently used to tether polysulfides. In addition, a molecular chlorophosphorane was synthesized as a model system to elucidate the chemical reactivity of the phosphorus moiety. The functionalized MOFs were then used as a cathode additive in coin cell batteries to inhibit the dissolution of polysulfides in solution. Through this work, we show that the functionalization of MOF with phosphorus enhances polysulfide redox and thereby capacity retention in Li–S batteries. While demonstrated here for polysulfide tethering in batteries, we envision this linker functionalization strategy could be more broadly utilized in separations, sensing, or catalysis applications. 
    more » « less
  3. The electrochemical behavior of sulfur-based batteries is intrinsically governed by polysulfide species. Here, we compare the substitutions of selenium and tellurium into polysulfide chains and demonstrate their beneficial impact on the chemistry of lithium–sulfur batteries. While selenium-substituted polysulfides enhance cathode utilization by effectively catalyzing the sulfur/Li 2 S conversion reactions due to the preferential formation of radical intermediates, tellurium-substituted polysulfides improve lithium cycling efficiency by reducing into a passivating interfacial layer on the lithium surface with low Li + -ion diffusion barriers. This unconventional strategy based on “molecular engineering” of polysulfides and exploiting the intrinsic polysulfide shuttle effect is validated by a ten-fold improvement in the cycle life of lean-electrolyte “anode-free” pouch cells. Assembled with no free lithium metal at the anode, the anode-free configuration maximizes the energy density, mitigates the challenges of handling thin lithium foils, and eliminates self-discharge upon cell assembly. The insights generated into the differences between selenium and tellurium chemistries can be applied to benefit a broad range of metal–chalcogen batteries as well as chalcogenide solid electrolytes. 
    more » « less
  4. Abstract

    Li‐S batteries can potentially deliver high energy density and power, but polysulfide shuttle and lithium dendrite formations on Li metal anode have been the major hurdle. The polysulfide shuttle becomes severe particularly when the areal loading of the active material (sulfur) is increased to deliver the high energy density and the charge/discharge current density is raised to deliver high power. This study reports a novel mechanochemical method to create trenches on the surface of carbon nanotubes (CNTs) in free‐standing 3D porous CNT sponges. Unique spiral trenches are created by pressures during the chemical treatment process, providing polysulfide‐philic surfaces for cathode and lithiophilic surfaces for anode. The Li‐S cells made from manufacturing‐friendly sulfur‐sandwiched cathodes and lithium‐infused anodes using the mechanochemically treated electrodes exhibit a strikingly high areal capacity as high as 13.3 mAh cm−2, which is only marginally reduced even with a tenfold increase in current density (16 mA cm−2), demonstrating both high “cell‐level” energy density and power. The outstanding performance can be attributed to the significantly improved reaction kinetics and lowered overpotentials coming from the reduced interfacial resistance and charge transfer resistance at both cathodes and anodes. The trench–wall CNT sponge simultaneously tackles the most critical problems on both the cathodes and anodes of Li‐S batteries, and this method can be utilized in designing new electrode materials for energy storage and beyond.

     
    more » « less
  5. Abstract

    Metal‐sulfur batteries are a promising next‐generation energy storage technology, offering high theoretical energy densities with low cost and good sustainability. An active area of research is the development of electrolytes that address unwanted migration of sulfur and intermediate species known as polysulfides during operation of metal‐sulfur batteries, a phenomenon that leads to low energy efficiency and short life‐spans. A particular class of electrolytes, gel polymer electrolytes, are especially attractive for their ability to repel polysulfides on the basis of structure, electrostatics, and other polymer properties. Herein, within the context of magnesium‐ and lithium‐sulfur batteries, we investigate the impact of gel polymer electrolyte cation solvation capacity, a property related to network dielectric constant and chemistry, on sulfur/polysulfide‐polymer interactions, an understudied property‐performance relationship. Polymers with lower cation solvation capacity are found to permanently absorb less polysulfide active material, which increases sulfur utilization for Li−S batteries and significantly increases charge efficiency and life‐span for Li−S and Mg−S batteries.

     
    more » « less