In computer vision, single-image super-resolution (SISR) has been extensively explored using convolutional neural networks (CNNs) on optical images, but images outside this domain, such as those from scientific experiments, are not well investigated. Experimental data is often gathered using non-optical methods, which alters the metrics for image quality. One such example is electron backscatter diffraction (EBSD), a materials characterization technique that maps crystal arrangement in solid materials, which provides insight into processing, structure, and property relationships. We present a broadly adaptable approach for applying state-of-art SISR networks to generate super-resolved EBSD orientation maps. This approach includes quaternion-based orientation recognition, loss functions that consider rotational effects and crystallographic symmetry, and an inference pipeline to convert network output into established visualization formats for EBSD maps. The ability to generate physically accurate, high-resolution EBSD maps with super-resolution enables high-throughput characterization and broadens the capture capabilities for three-dimensional experimental EBSD datasets.
- Publication Date:
- NSF-PAR ID:
- 10385591
- Journal Name:
- npj Computational Materials
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2057-3960
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Background Cryo-EM data generated by electron tomography (ET) contains images for individual protein particles in different orientations and tilted angles. Individual cryo-EM particles can be aligned to reconstruct a 3D density map of a protein structure. However, low contrast and high noise in particle images make it challenging to build 3D density maps at intermediate to high resolution (1–3 Å). To overcome this problem, we propose a fully automated cryo-EM 3D density map reconstruction approach based on deep learning particle picking. Results A perfect 2D particle mask is fully automatically generated for every single particle. Then, it uses a computer vision image alignment algorithm (image registration) to fully automatically align the particle masks. It calculates the difference of the particle image orientation angles to align the original particle image. Finally, it reconstructs a localized 3D density map between every two single-particle images that have the largest number of corresponding features. The localized 3D density maps are then averaged to reconstruct a final 3D density map. The constructed 3D density map results illustrate the potential to determine the structures of the molecules using a few samples of good particles. Also, using the localized particle samples (with no background) to generate themore »
-
Introduction: Vaso-occlusive crises (VOCs) are a leading cause of morbidity and early mortality in individuals with sickle cell disease (SCD). These crises are triggered by sickle red blood cell (sRBC) aggregation in blood vessels and are influenced by factors such as enhanced sRBC and white blood cell (WBC) adhesion to inflamed endothelium. Advances in microfluidic biomarker assays (i.e., SCD Biochip systems) have led to clinical studies of blood cell adhesion onto endothelial proteins, including, fibronectin, laminin, P-selectin, ICAM-1, functionalized in microchannels. These microfluidic assays allow mimicking the physiological aspects of human microvasculature and help characterize biomechanical properties of adhered sRBCs under flow. However, analysis of the microfluidic biomarker assay data has so far relied on manual cell counting and exhaustive visual morphological characterization of cells by trained personnel. Integrating deep learning algorithms with microscopic imaging of adhesion protein functionalized microfluidic channels can accelerate and standardize accurate classification of blood cells in microfluidic biomarker assays. Here we present a deep learning approach into a general-purpose analytical tool covering a wide range of conditions: channels functionalized with different proteins (laminin or P-selectin), with varying degrees of adhesion by both sRBCs and WBCs, and in both normoxic and hypoxic environments. Methods: Our neuralmore »
-
Traditionally, a high-performance microscope with a large numerical aperture is required to acquire high-resolution images. However, the images’ size is typically tremendous. Therefore, they are not conveniently managed and transferred across a computer network or stored in a limited computer storage system. As a result, image compression is commonly used to reduce image size resulting in poor image resolution. Here, we demonstrate custom convolution neural networks (CNNs) for both super-resolution image enhancement from low-resolution images and characterization of both cells and nuclei from hematoxylin and eosin (H&E) stained breast cancer histopathological images by using a combination of generator and discriminator networks so-called super-resolution generative adversarial network-based on aggregated residual transformation (SRGAN-ResNeXt) to facilitate cancer diagnosis in low resource settings. The results provide high enhancement in image quality where the peak signal-to-noise ratio and structural similarity of our network results are over 30 dB and 0.93, respectively. The derived performance is superior to the results obtained from both the bicubic interpolation and the well-known SRGAN deep-learning methods. In addition, another custom CNN is used to perform image segmentation from the generated high-resolution breast cancer images derived with our model with an average Intersection over Union of 0.869 and an average dicemore »
-
Mid-infrared Spectroscopic Imaging (MIRSI) provides spatially-resolved molecular specificity by measuring wavelength-dependent mid-infrared absorbance. Infrared microscopes use large numerical aperture objectives to obtain high-resolution images of heterogeneous samples. However, the optical resolution is fundamentally diffraction-limited, and therefore wavelength-dependent. This significantly limits resolution in infrared microscopy, which relies on long wavelengths (2.5 μm to 12.5 μm) for molecular specificity. The resolution is particularly restrictive in biomedical and materials applications, where molecular information is encoded in the fingerprint region (6 μm to 12 μm), limiting the maximum resolving power to between 3 μm and 6 μm. We present an unsupervised curvelet-based image fusion method that overcomes limitations in spatial resolution by augmenting infrared images with label-free visible microscopy. We demonstrate the effectiveness of this approach by fusing images of breast and ovarian tumor biopsies acquired using both infrared and dark-field microscopy. The proposed fusion algorithm generates a hyperspectral dataset that has both high spatial resolution and good molecular contrast. We validate this technique using multiple standard approaches and through comparisons to super-resolved experimentally measured photothermal spectroscopic images. We also propose a novel comparison method based on tissue classification accuracy.
-
Abstract We present a deep learning framework based on a generative adversarial network (GAN) to perform super-resolution in coherent imaging systems. We demonstrate that this framework can enhance the resolution of both pixel size-limited and diffraction-limited coherent imaging systems. The capabilities of this approach are experimentally validated by super-resolving complex-valued images acquired using a lensfree on-chip holographic microscope, the resolution of which was pixel size-limited. Using the same GAN-based approach, we also improved the resolution of a lens-based holographic imaging system that was limited in resolution by the numerical aperture of its objective lens. This deep learning-based super-resolution framework can be broadly applied to enhance the space-bandwidth product of coherent imaging systems using image data and convolutional neural networks, and provides a rapid, non-iterative method for solving inverse image reconstruction or enhancement problems in optics.