skip to main content


Title: AFM Force Measurements to Explore Grain Contacts with Relevance for Planetary Materials
Abstract

Most small asteroids are defined as “rubble piles” or bodies with zero tensile strength and large bulk porosity. The cohesive forces that hold them together act at the grain scale, and their magnitude is often estimated from similar materials when used in simulations. Improving the accuracy of predictions of asteroid strengths requires suitable laboratory measurements of relevant materials, as well as increasing the availability of materials from sample return. Atomic force microscopy (AFM) is well suited for force measurements relative to particle–particle interactions. In this work, we use AFM force measurements to evaluate the cohesive forces that act between micron-sized grains. We investigate the effect of the sizes of the interacting grains of JSC-1 lunar simulant using three sample sizes (<45, 75–125, and 125–250μm) and three spherical AFM tip diameters (2μm, 15μm, and 45μm). In all cases, adhesion forces were larger at ambient relative humidity (RH), where the water layer on the surface of the grains is more prominent, creating a larger meniscus between the tip and the grain upon contact. We observed weaker adhesion with larger grain/tip size, which can be attributed to the changing contact area between the samples and the tips. We expect that our approach will pave the way to a better understanding of regolith surface properties such as adhesion and cohesion and provide suitable input for models that can be used to predict the evolution of asteroids and their particle behaviors.

 
more » « less
NSF-PAR ID:
10385669
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Planetary Science Journal
Volume:
3
Issue:
12
ISSN:
2632-3338
Format(s):
Medium: X Size: Article No. 273
Size(s):
["Article No. 273"]
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop a physical and computational model for performing fully coupled, grain-resolved direct numerical simulations of cohesive sediment, based on the immersed boundary method. The model distributes the cohesive forces over a thin shell surrounding each particle, thereby allowing for the spatial and temporal resolution of the cohesive forces during particle–particle interactions. The influence of the cohesive forces is captured by a single dimensionless parameter in the form of a cohesion number, which represents the ratio of cohesive and gravitational forces acting on a particle. We test and validate the cohesive force model for binary particle interactions in the drafting–kissing–tumbling (DKT) configuration. Cohesive sediment grains can remain attached to each other during the tumbling phase following the initial collision, thereby giving rise to the formation of flocs. The DKT simulations demonstrate that cohesive particle pairs settle in a preferred orientation, with particles of very different sizes preferentially aligning themselves in the vertical direction, so that the smaller particle is drafted in the wake of the larger one. This preferred orientation of cohesive particle pairs is found to remain influential for systems of higher complexity. To this end, we perform large simulations of 1261 polydisperse settling particles starting from rest. These simulations reproduce several earlier experimental observations by other authors, such as the accelerated settling of sand and silt particles due to particle bonding, the stratification of cohesive sediment deposits, and the consolidation process of the deposit. They identify three characteristic phases of the polydisperse settling process, viz. (i) initial stir-up phase with limited flocculation, (ii) enhanced settling phase characterized by increased flocculation, and (iii) consolidation phase. The simulations demonstrate that cohesive forces accelerate the overall settling process primarily because smaller grains attach to larger ones and settle in their wakes. For the present cohesive number values, we observe that settling can be accelerated by up to 29 %. We propose physically based parametrization of classical hindered settling functions introduced by earlier authors, in order to account for cohesive forces. An investigation of the energy budget shows that, even though the work of the collision forces is much smaller than that of the hydrodynamic drag forces, it can substantially modify the relevant energy conversion processes. 
    more » « less
  2. We investigate the submerged collapse of weakly polydisperse, loosely packed cohesive granular columns, as a function of aspect ratio and cohesive force strength, via grain-resolving direct numerical simulations. The cohesive forces act to prevent the detachment of individual particles from the main body of the collapsing column, reduce its front velocity, and yield a shorter and thicker final deposit. All of these effects can be captured accurately across a broad range of parameters by piecewise power-law relationships. The cohesive forces reduce significantly the amount of available potential energy released by the particles. For shallow columns, the particle and fluid kinetic energy decreases for stronger cohesion. For tall columns, on the other hand, moderate cohesive forces increase the maximum particle kinetic energy, since they accelerate the initial free-fall of the upper column section. Only for larger cohesive forces does the peak kinetic energy of the particles decrease. Computational particle tracking indicates that the cohesive forces reduce the mixing of particles within the collapsing column, and it identifies the regions of origin of those particles that travel the farthest. The simulations demonstrate that cohesion promotes aggregation and the formation of aggregates. Furthermore, they provide complete information on the temporally and spatially evolving network of cohesive and direct contact force bonds. While the normal contact forces are aligned primarily in the vertical direction, the cohesive bonds adjust their preferred spatial orientation throughout the collapse. They result in a net macroscopic stress that counteracts deformation and slows the spreading of the advancing particle front.

     
    more » « less
  3. Determination of the surface hydrophobicity or wettability of nanomaterials and nanoparticles (NPs) is often challenged by the heterogeneous properties of NPs that vary with particle size, shape, surface charge, aggregation states, and surface sorption or coating. This study first summarized inherent limitations of the water contact angle, octanol–water partition coefficient ( K ow ) and surface adsorption of probe molecules in probing nanomaterial hydrophobicity. Then, we demonstrated the principle of a scanning probe method based on atomic force microscopy (AFM) for the local surface hydrophobicity measurement. Specifically, we measured the adhesion forces between functionalized AFM tips and self-assembled monolayers (SAMs) to establish a linear relationship between the adhesion forces and water contact angles based on the continuum thermodynamic approach (CTA). This relationship was used to determine the local surface hydrophobicity of seven different NPs ( i.e. , TiO 2 , ZnO, SiO 2 , CuO, CeO 2 , α-Fe 2 O 3 , and Ag), which agreed well with bulk contact angles of these NPs. Some discrepancies were observed for Fe 2 O 3 , CeO 2 and SiO 2 NPs, probably because of surface hydration and roughness effects. Moreover, the solution pH and ionic strength had negligible effects on the adhesion forces between the AFM tip and MWCNTs or C 60 , indicating that the hydrophobicity of carbonaceous nanomaterials is not influenced by pH or ionic strength (IS). By contrast, natural organic matter (NOM) appreciably decreased the hydrophobicity of MWCNTs and C 60 due to surface coating of hydrophilic NOM. This scanning probe method has been proved to be reliable and robust toward the accurate measurement of the nanoscale hydrophobicity of individual NPs or nanomaterials in liquid environments. 
    more » « less
  4. Abstract

    Aligned interstellar grains produce polarized extinction (observed at wavelengths from the far-ultraviolet to the mid-infrared) and polarized thermal emission (observed at far-infrared and submm wavelengths). The grains must be quite nonspherical, but the actual shapes are unknown. Therelativeefficacy for aligned grains to produce polarization at optical versus infrared wavelengths depends on particle shape. The discrete dipole approximation is used to calculate polarization cross sections for 20 different convex shapes, for wavelengths from 0.1 to 100μm, and grain sizesaefffrom 0.05 to 0.3μm. Spheroids, cylinders, square prisms, and triaxial ellipsoids are considered. Minimum aspect ratios required by the observed starlight polarization are determined. Some shapes can also be ruled out because they provide too little or too much polarization at far-infrared and submm wavelengths. The ratio of 10μm polarization to integrated optical polarization is almost independent of grain shape, varying by only ±8% among the viable convex shapes; thus, at least for convex grains, uncertainties in grain shape cannot account for the discrepancy between predicted and observed 10μm polarization toward Cyg OB2-12.

     
    more » « less
  5. null (Ed.)
    Background: Surface topography strongly modifies adhesion of hard-material contacts, yet roughness of real surfaces typically exists over many length scales, and it is not clear which of these scales has the strongest effect. Objective: This investigation aims to determine which scales of topography have the strongest effect on macroscopic adhesion. Methods: Adhesion measurements were performed on technology-relevant diamond coatings of varying roughness using spherical ruby probes that are large enough (0.5-mm-diameter) to sample all length scales of topography. For each material, more than 2000 measurements of pull-off force were performed in order to investigate the magnitude and statistical distribution of adhesion. Using sphere-contact models, the roughness-dependent effective values of work of adhesion were measured, ranging from 0.08 to 7.15 mJ/m^2 across the four surfaces. The data was more accurately fit using numerical analysis, where an interaction potential was integrated over the AFM-measured topography of all contacting surfaces. Results: These calculations revealed that consideration of nanometer-scale plasticity in the materials was crucial for a good quantitative fit of the measurements, and the presence of such plasticity was confirmed with AFM measurements of the probe after testing. This analysis enabled the extraction of geometry-independent material parameters; the intrinsic work of adhesion between ruby and diamond was determined to be 46.3 mJ/m^2. The range of adhesion was 5.6 nm, which is longer than is typically assumed for atomic interactions, but is in agreement with other recent investigations. Finally, the numerical analysis was repeated for the same surfaces but this time with different length-scales of roughness included or filtered out. Conclusions: The results demonstrate a critical band of length-scales—between 43 nm and 1.8 µm in lateral size—that has the strongest effect on the total adhesive force for these hard, rough contacts. 
    more » « less