- NSF-PAR ID:
- 10385736
- Date Published:
- Journal Name:
- 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
- Page Range / eLocation ID:
- 839 to 849
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Shared memory parallel programming models strive to provide low-overhead execution environments. Task-based programming models, in particular, are well-suited to cope with the ubiquitous multi- and many-core systems since they allow applications to express all available concurrency to a scheduler, which is tasked with exploiting the available hardware resources. It is general consensus that atomic operations should be preferred over locks and mutexes to avoid inter-thread serialization and the resulting loss in efficiency. However, even atomic operations may serialize threads if not used judiciously. In this work, we will discuss several optimizations applied to TTG and the underlying PaRSEC runtime system aiming at removing contentious atomic operations to reduce the overhead of task management to a few hundred clock cycles. The result is an optimized data-flow programming system that seamlessly scales from a single node to distributed execution and which is able to compete with OpenMP in shared memory.more » « less
-
Recently, several task-parallel programming models have emerged to address the high synchronization and load imbalance issues as well as data movement overheads in modern shared memory architectures. OpenMP, the most commonly used shared memory parallel programming model, has added task execution support with dataflow dependencies. HPX and Regent are two more recent runtime systems that also support the dataflow execution model and extend it to distributed memory environments. We focus on parallelization of sparse matrix computations on shared memory architectures. We evaluate the OpenMP, HPX and Regent runtime systems in terms of performance and ease of implementation, and compare them against the traditional BSP model for two popular eigensolvers, Lanczos and LOBPCG. We give a general outline in regards to achieving parallelism using these runtime systems, and present a heuristic for tuning their performance to balance tasking overheads with the degree of parallelism that can be exposed. We then demonstrate their merits on two architectures, Intel Broadwell (a multicore processor) and AMD EPYC (a modern manycore processor). We observe that these frameworks achieve up to 13.7 × fewer cache misses over an efficient BSP implementation across L1, L2 and L3 cache layers. They also obtain up to 9.9 × improvement in execution time over the same BSP implementation.more » « less
-
Summary Data‐driven programming models such as many‐task computing (MTC) have been prevalent for running data‐intensive scientific applications. MTC applies over‐decomposition to enable distributed scheduling. To achieve extreme scalability, MTC proposes a fully distributed task scheduling architecture that employs as many schedulers as the compute nodes to make scheduling decisions. Achieving distributed load balancing and best exploiting data locality are two important goals for the best performance of distributed scheduling of data‐intensive applications. Our previous research proposed a data‐aware work‐stealing technique to optimize both load balancing and data locality by using both dedicated and shared task ready queues in each scheduler. Tasks were organized in queues based on the input data size and location. Distributed key‐value store was applied to manage task metadata. We implemented the technique in MATRIX, a distributed MTC task execution framework. In this work, we devise an analytical suboptimal upper bound of the proposed technique, compare MATRIX with other scheduling systems, and explore the scalability of the technique at extreme scales. Results show that the technique is not only scalable but can achieve performance within 15% of the suboptimal solution. Copyright © 2015 John Wiley & Sons, Ltd.
-
Asynchronous many-task runtimes look promising for the next generation of high performance computing systems. But these runtimes are usually based on new programming models, requiring extensive programmer effort to port existing applications to them. An alternative approach is to reimagine the execution model of widely used programming APIs, such as MPI, in order to execute them more asynchronously. Virtualization is a powerful technique that can be used to execute a bulk synchronous parallel program in an asynchronous manner. Moreover, if the virtualized entities can be migrated between address spaces, the runtime can optimize execution with dynamic load balancing, fault tolerance, and other adaptive techniques. Previous work on automating process virtualization has explored compiler approaches, source-to-source refactoring tools, and runtime methods. These approaches achieve virtualization with different tradeoffs in terms of portability (across different architectures, operating systems, compilers, and linkers), programmer effort required, and the ability to handle all different kinds of global state and programming languages. We implement support for three different related runtime methods, discuss shortcomings and their applicability to user-level virtualized process migration, and compare performance to existing approaches. Compared to existing approaches, one of our new methods achieves what we consider the best overall functionality in terms of portability, automation, support for migration, and runtime performance.more » « less
-
null (Ed.)We describe TESSE, an emerging general-purpose, open-source software ecosystem that attacks the twin challenges of programmer productivity and portable performance for advanced scientific applications on modern high-performance computers. TESSE builds upon and extends the ParsecDAG/-dataflow runtime with a new Domain Specific Languages (DSL) and new integration capabilities. Motivating this work is our belief that such a dataflow model, perhaps with applications composed in domain specific languages, can overcome many of the challenges faced by a wide variety of irregular applications that are poorly served by current programming and execution models. Two such applications from many-body physics and applied mathematics are briefly explored. This paper focuses upon the Template Task Graph (TTG), which is TESSE's main C++ Api that provides a powerful work/data-flow programming model. Algorithms on spatial trees, block-sparse tensors, and wave fronts are used to illustrate the API and associated concepts, as well as to compare with related approaches.more » « less