skip to main content

This content will become publicly available on December 6, 2023

Title: Evolved Eclipsing Binaries and the Age of the Open Cluster NGC 752*
Abstract We present analyses of improved photometric and spectroscopic observations for two detached eclipsing binaries at the turnoff of the open cluster NGC 752: the 1.01 days binary DS And and the 15.53 days BD +37 410. For DS And, we find M 1 = 1.692 ± 0.004 ± 0.010 M ⊙ , R 1 = 2.185 ± 0.004 ± 0.008 R ⊙ , M 2 = 1.184 ± 0.001 ± 0.003 M ⊙ , and R 2 = 1.200 ± 0.003 ± 0.005 R ⊙ . We either confirm or newly identify unusual characteristics of both stars in the binary: the primary star is found to be slightly hotter than the main-sequence turnoff and there is a more substantial discrepancy in its luminosity compared to models (model luminosities are too large by about 40%), while the secondary star is oversized and cooler compared to other main-sequence stars in the same cluster. The evidence points to nonstandard evolution for both stars, but most plausible paths cannot explain the low luminosity of the primary star. BD +37 410 only has one eclipse per cycle, but extensive spectroscopic observations and the Transiting Exoplanet Survey Satellite light curve constrain the stellar masses well: more » M 1 = 1.717 ± 0.011 M ⊙ and M 2 = 1.175 ± 0.005 M ⊙ . The radius of the main-sequence primary star near 2.9 R ⊙ definitively requires large convective core overshooting (>0.2 pressure scale heights) in models for its mass, and multiple lines of evidence point toward an age of 1.61 ± 0.03 ± 0.05 Gyr (statistical and systematic uncertainties). Because NGC 752 is currently undergoing the transition from nondegenerate to degenerate He ignition of its red clump stars, BD +37 410 A directly constrains the star mass where this transition occurs. « less
; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astronomical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Precision CCDuvbyCaHβphotometry is presented of the old cluster, M67, covering one square degree with typical internal precision at the 0.005–0.020 mag level toV∼ 17. The photometry is calibrated using standards over a wide range in luminosity and temperature from NGC 752 and zeroed to the standard system via published photoelectric observations. Relative to NGC 752, differential offsets in reddening and metallicity are derived using astrometric members, supplemented by radial velocity information. From single-star members, offsets in the sense (M67−NGC 752) areδE(by) = −0.005 ± 0.001 (sem) mag from 327 F/G dwarfs andδ[Fe/H] = 0.062 ± 0.006 (sem) dex from the combinedm1andhkindices of 249 F dwarfs, leading toE(by) = 0.021 ± 0.004 (sem) and [Fe/H]M67= +0.030 ± 0.016 (sem) assuming [Fe/H]Hyades= +0.12. With probable binaries eliminated usingc1, (by) indices, 83 members with (π/σπ) > 50 generate (mM)0= 8.220 ± 0.005 (sem) for NGC 752 and an isochronal age of 1.45 ± 0.05 Gyr. Using the same parallax restriction for 312 stars, M67 has (mM) = 9.77 ± 0.02 (sem), leading to an age tied solely to the luminosity of the subgiant branch of 3.70 ± 0.03 Gyr. The turnoff color spread implies ±0.1 Gyr, but the turnoff morphology defines amore »younger age/higher mass for the stars, consistent with recent binary analysis and broadband photometry indicating possible missing physics in the isochrones. Anomalous stars positioned blueward of the turnoff are discussed.

    « less
  2. Abstract

    We present the results of the first systematic search for spectroscopic binaries within the central 2 × 3 arcsec2around the supermassive black hole at the center of the Milky Way galaxy. This survey is based primarily on over a decade of adaptive optics-fed integral-field spectroscopy (R∼ 4000), obtained as part of the Galactic Center Orbits Initiative at Keck Observatory, and it has a limitingK’-band magnitude of 15.8, which is at least 4 mag deeper than previous spectroscopic searches for binaries at larger radii within the central nuclear star cluster. From this primary data set, over 600 new radial velocities are extracted and reported, increasing by a factor of 3 the number of such measurements. We find no significant periodic signals in our sample of 28 stars, of which 16 are massive, young (main-sequence B) stars and 12 are low-mass, old (M and K giant) stars. Using Monte Carlo simulations, we derive upper limits on the intrinsic binary star fraction for the young star population at 47% (at 95% confidence) located ∼20 mpc from the black hole. The young star binary fraction is significantly lower than that observed in the field (70%). This result is consistent with a scenario inmore »which the central supermassive black hole drives nearby stellar binaries to merge or be disrupted, and it may have important implications for the production of gravitational waves and hypervelocity stars.

    « less
  3. Abstract

    We observe the brightest member of the Praesepe cluster,ϵCnc, to precisely measure the characteristics of the stars in this binary system, en route to a new measurement of the cluster’s age. We present spectroscopic radial velocity measurements and interferometric observations of the sky-projected orbit to derive the masses, which we find to beM1/M= 2.420 ± 0.008 andM2/M= 2.226 ± 0.004. We place limits on the color–magnitude positions of the stars by using spectroscopic and interferometric luminosity ratios while trying to reproduce the spectral energy distribution ofϵCnc. We reexamine the cluster membership of stars at the bright end of the color–magnitude diagram using Gaia data and literature radial velocity information. The binary star data are consistent with an age of 637 ± 19 Myr, as determined from MIST model isochrones. The masses and luminosities of the stars appear to select models with the most commonly used amount of convective core overshooting.

  4. Abstract Through the Backyard Worlds: Planet 9 citizen science project we discovered a late-type L dwarf co-moving with the young K0 star BD+60 1417 at a projected separation of 37″ or 1662 au. The secondary—CWISER J124332.12+600126.2 (W1243)—is detected in both the CatWISE2020 and 2MASS reject tables. The photometric distance and CatWISE proper motion both match that of the primary within ∼1 σ and our estimates for a chance alignment yield a zero probability. Follow-up near-infrared spectroscopy reveals W1243 to be a very red 2MASS ( J – K s = 2.72), low surface gravity source that we classify as L6–L8 γ . Its spectral morphology strongly resembles that of confirmed late-type L dwarfs in 10–150 Myr moving groups as well as that of planetary mass companions. The position on near- and mid-infrared color–magnitude diagrams indicates the source is redder and fainter than the field sequence, a telltale sign of an object with thick clouds and a complex atmosphere. For the primary we obtained new optical spectroscopy and analyzed all available literature information for youth indicators. We conclude that the Li i abundance, its loci on color–magnitude and color–color diagrams, and the rotation rate revealed in multiple TESS sectors are allmore »consistent with an age of 50–150 Myr. Using our re-evaluated age of the primary and the Gaia parallax, along with the photometry and spectrum for W1243, we find T eff = 1303 ± 31 K, log g = 4.3 ± 0.17 cm s −2 , and a mass of 15 ± 5 M Jup . We find a physical separation of ∼1662 au and a mass ratio of ∼0.01 for this system. Placing it in the context of the diverse collection of binary stars, brown dwarfs, and planetary companions, the BD+60 1417 system falls in a sparsely sampled area where the formation pathway is difficult to assess.« less
  5. Context. The origin of the observed population of Wolf-Rayet (WR) stars in low-metallicity galaxies, such as the Small Magellanic Cloud (SMC), is not yet understood. Standard, single-star evolutionary models predict that WR stars should stem from very massive O-type star progenitors, but these are very rare. On the other hand, binary evolutionary models predict that WR stars could originate from primary stars in close binaries. Aims. We conduct an analysis of the massive O star, AzV 14, to spectroscopically determine its fundamental and stellar wind parameters, which are then used to investigate evolutionary paths from the O-type to the WR stage with stellar evolutionary models. Methods. Multi-epoch UV and optical spectra of AzV 14 are analyzed using the non-local thermodynamic equilibrium (LTE) stellar atmosphere code PoWR. An optical TESS light curve was extracted and analyzed using the PHOEBE code. The obtained parameters are put into an evolutionary context, using the MESA code. Results. AzV 14 is a close binary system with a period of P  = 3.7058 ± 0.0013 d. The binary consists of two similar main sequence stars with masses of M 1, 2  ≈ 32  M ⊙ . Both stars have weak stellar winds with mass-loss rates of log Ṁ /( M ⊙ yrmore »−1 ) = −7.7 ± 0.2. Binary evolutionary models can explain the empirically derived stellar and orbital parameters, including the position of the AzV 14 components on the Hertzsprung-Russell diagram, revealing its current age of 3.3 Myr. The model predicts that the primary will evolve into a WR star with T eff  ≈ 100 kK, while the secondary, which will accrete significant amounts of mass during the first mass transfer phase, will become a cooler WR star with T eff  ≈ 50 kK. Furthermore, WR stars that descend from binary components that have accreted significant amount of mass are predicted to have increased oxygen abundances compared to other WR stars. This model prediction is supported by a spectroscopic analysis of a WR star in the SMC. Conclusions. Inspired by the binary evolutionary models, we hypothesize that the populations of WR stars in low-metallicity galaxies may have bimodal temperature distributions. Hotter WR stars might originate from primary stars, while cooler WR stars are the evolutionary descendants of the secondary stars if they accreted a significant amount of mass. These results may have wide-ranging implications for our understanding of massive star feedback and binary evolution channels at low metallicity.« less