Abstract Chemical recycling to monomer (CRM) is a promising route for transitioning to a circular polymer economy. To develop new CRM systems with useful properties, it is important to understand the effects of monomer structure on polymerization/depolymerization behavior. In earlier work, this group demonstrated chemically recyclable polymers prepared by ring‐opening metathesis polymerization oftrans‐cyclobutane fused cyclooctenes (tCBCO). Here, it is investigated how different substituents on cyclobutane impact the thermodynamics and thermal properties oftCBCO polymers. Introducing additional substituents to acis‐diester functionalizedtCBCO is found to favor the conversion of polymerization; increased polymerization conversion is also observed when thecis‐diester is isomerized into itstranscounterpart. The effects of these structural features on the thermal properties are also studied. These findings can provide important insights into designing next‐generation CRM polymers.
more »
« less
Conformational bias in density functional theory ring strain energy calculations of cyclopentene derivatives: Towards predictive design of chemically recyclable elastomers
Abstract Equilibrium ring opening metathesis polymerization of low strained cycloolefins is opportunistic for the development of novel materials capable of chemical recycling to monomer (CRM). However, many of the potential materials for CRM contain complex side chains complicating predictions of their ring strain energies (RSE). The effects of different conformational considerations on RSE predictions using density functional theory (DFT) are explored. New homodesmotic equations are investigated to capture changes in olefin conformation upon polymerization. The employment ofcis‐2‐butene as a corrective factor with a 2,7‐nonadiene linear analog bearing onecisand onetransolefin (H2cis) resulted in RSEs similar to previously reported ΔHpvalues. Different consideration of possible conformers aside from their lowest energy counterparts leads to a range of predicted RSE values. Similarly, the application of a Boltzmann distribution resulted in negligible differences in RSE. Therefore, RSE predictions using the lowest energy structures with H2ciscalculated at B3LYP/6‐31+G* in toluene is a sufficient approach for predicting RSE of monomers with multiple conformers. This method can be used to screen a monomer's potential for CRM to reduce the time, cost, waste, and effort necessary to research new materials towards a more circular polymer economy.
more »
« less
- Award ID(s):
- 1750852
- PAR ID:
- 10385823
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science
- Volume:
- 60
- Issue:
- 24
- ISSN:
- 2642-4150
- Format(s):
- Medium: X Size: p. 3391-3403
- Size(s):
- p. 3391-3403
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The structures of three racemic (tetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl)methanol derivatives are reported, namely, 4-[(methylsulfonyloxy)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C8H14O7S,1, 4-[(benzyloxy)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C14H18O5,2, and 4-[(anilinocarbonyl)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C14H17NO6,3. Mesylate ester1at 173 K has triclinicP\overline{1} symmetry and both benzyl ether2at 173 K and phenyl urethane3have monoclinicP21/csymmetry. These structures are of interest because of the conformation of thecis-fused tetraoxadecalin ring system. Thiscis-bicyclo[4.4.0]decane ring system,i.e. cis-decalin, can undergo conformational equilibration. In the two most stable conformers, both six-membered rings adopt a chair conformation. However, there are significant consequences in these two stable conformers, with heteroatom substitution at the 1,3,5,7-ring positions as described. Only one conformation, denoted as `concave' or `inside', is found in these crystal structures. This is consistent with previously reported structures of the 1,1-geminal dihydroxy aldehyde and tosylate analogs.more » « less
-
Abstract While depolymerizable polymers have been intensely pursued as a potential solution to address the challenges in polymer sustainability, most depolymerization systems are characterized by a low driving force in polymerization, which poses difficulties for accessing diverse functionalities and architectures of polymers. Here, we address this challenge by using a cyclooctene‐based depolymerization system, in which thecis‐to‐transalkene isomerization significantly increases the ring strain energy to enable living ring‐opening metathesis polymerization at monomer concentrations ≥0.025 M. An additionaltrans‐cyclobutane fused at the 5,6‐position of the cyclooctene reduces the ring strain energy of cyclooctene, enabling the corresponding polymers to depolymerize into thecis‐cyclooctene monomers. The use of excess triphenylphosphine was found to be essential to suppress secondary metathesis and depolymerization. The high‐driving‐force living polymerization of thetrans‐cyclobutane fusedtrans‐cyclooctene system holds promise for developing chemically recyclable polymers of a wide variety of polymer architectures.more » « less
-
Abstract Poly(p‐phenylene vinylene)s (PPVs) and poly(arylene vinylene)s are key materials for a variety of applications ranging from organic light emitting diodes to fluorescent optical probes. Their syntheses, however, have been hampered by non‐living or step‐growth polymerization techniques. The development of functional‐group tolerant olefin metathesis catalysts has enabled the use of living ring‐opening metathesis polymerization (ROMP) of cyclophane monomers yielding PPVs and poly(p‐phenylene‐co‐arylene vinylene)s in a living manner. Low dispersity and soluble PPVs are afforded with control over the number of repeat units with easy incorporation of different end‐groups at their heads or tails. In this review, a comprehensive overview of tetrasubstituted and disubstituted alkyl and alkoxy containing [2.2]paracyclophane‐1,9‐diene, [2.2]metaparacyclophane‐1,9‐diene, [2.2.2]paracyclophane‐1,9,17‐triene, and benzothiadiazole‐[2.2]paracyclophane‐1,9‐diene is provided. The high ring strain of these monomers enables efficient polymerizations with ruthenium initiators. A particular emphasis is on [2.2]paracyclophane‐1,9‐dienes as it is the most investigated class of polymerized cyclophanediene since initially reported 30 years ago. Additionally, applications for soft materials synthesized by ROMP are examined, highlighting easily accessed PPV copolymers and PPV block copolymers that can be phototriggered, as well as PPVs featuring supramolecular recognition units installed at their termini to afford orthogonally self‐assembled architectures.more » « less