skip to main content


Title: Spatially variable hydrologic impact and biomass production tradeoffs associated with Eucalyptus ( E. grandis ) cultivation for biofuel production in Entre Rios, Argentina
Abstract

Climate change and energy security promote using renewable sources of energy such as biofuels. High woody biomass production achieved from short‐rotation intensive plantations is a strategy that is increasing in many parts of the world. However, broad expansion of bioenergy feedstock production may have significant environmental consequences. This study investigates the watershed‐scale hydrological impacts of Eucalyptus(E. grandis) plantations for energy production in a humid subtropical watershed in Entre Rios province, Argentina. A Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, leaf area index (LAI), and biomass production cycles. The model was used to simulate various Eucalyptusplantation scenarios that followed physically based rules for land use conversion (in various extents and locations in the watershed) to study hydrological effects, biomass production, and the green water footprint of energy production. SWAT simulations indicated that the most limiting factor for plant growth was shallow soils causing seasonal water stress. This resulted in a wide range of biomass productivity throughout the watershed. An optimization algorithm was developed to find the best location for Eucalyptusdevelopment regarding highest productivity with least water impact. E. grandisplantations had higher evapotranspiration rates compared to existing terrestrial land cover classes; therefore, intensive land use conversion to E. grandiscaused a decline in streamflow, with January through March being the most affected months. October was the least‐affected month hydrologically, since high rainfall rates overcame the canopy interception and higher ET rates of E. grandisin this month. Results indicate that, on average, producing 1 kg of biomass in this region uses 0.8 m3of water, and the green water footprint of producing 1 m3fuel is approximately 2150 m3water, or 57 m3water per GJ of energy, which is lower than reported values for wood‐based ethanol, sugar cane ethanol, and soybean biodiesel.

 
more » « less
NSF-PAR ID:
10386058
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
GCB Bioenergy
Volume:
13
Issue:
5
ISSN:
1757-1693
Page Range / eLocation ID:
p. 823-837
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding land use/land cover (LULC) effects on tropical soil infiltration is crucial for maximizing watershed scale hydro‐ecosystem services and informing land managers. This paper reports results from a multiyear investigation of LULC effects on soil bulk infiltration in steep, humid tropical, and lowland catchments. A rainfall simulator applied water at measured rates on 2 × 6 m plots producing infiltration through structured, granulated, and macroporous Ferralsols in Panama's central lowlands. Time‐lapse electrical resistivity tomography (ERT) helped to visualize infiltration depth and bulk velocity. A space‐for‐time substitution methodology allowed a land‐use history investigation by considering the following: (a) a continuously heavy‐grazed cattle pasture, (b) a rotationally grazed traditional cattle pasture, (c) a 4‐year‐old (y.o.) silvopastoral system with nonnative improved pasture grasses and managed intensive rotational grazing, (d) a 7 y.o. teak (Tectona grandis) plantation, (e) an approximately 10 y.o. secondary succession forest, (f) a 12 y.o. coffee plantation(Coffea canephora), (g) an approximately 30 y.o. secondary succession forest, and (h) a >100 y.o. secondary succession forest. Within a land cover, unique plot sites totalled two at (a), (c), (d), (e), and (g); three at (b); and one at (f) and (h). Our observations confirmed measured infiltration scale dependency by comparing our 12 m2plot‐scale measurements against 8.9 cm diameter core‐scale measurements collected by others from nearby sites. Preferential flow pathways (PFPs) significantly increased soil infiltration capacity, particularly in forests greater than or equal to 10 y.o. Time‐lapse ERT observations revealed shallower rapid bulk infiltration and increased rapid lateral subsurface flow in pasture land covers when compared with forest land covers and highlighted how much subsurface flow pathways can vary within the Ferralsol soil class. Results suggest that LULC effects on PFPs are the dominant mechanism by which LULC affects throughfall partitioning, runoff generation, and flow pathways.

     
    more » « less
  2. Abstract

    Few long‐term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast‐growing species (Pinus radiata,Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long‐term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long‐term mean. Pre‐drought runoff ratios were <0.2 under 8‐year‐old Eucalyptus; >0.4 under 21‐year‐old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide‐treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.

     
    more » « less
  3. Abstract

    Small streams often lack reliable hydrological data. Environmental agencies play a key role in providing such data; however, these agencies are often challenged by the growing monitoring needs and lack of funding. Given the spatial mismatch between observed data and small watersheds/headwaters, local volunteers can act as potentially valuable research partners. We examine how CrowdHydrology, a citizen science program that collects stream stage and stream temperature observations, improves a hydrologic model of the Boyne River, Michigan, USA. Volunteers provided observations at four calibration sites with different interarrival times of the observations. We tested whether stream stage and stream temperature observations (measured by volunteers) improved the performance of a Soil and Water Assessment Tool (SWAT) model of the Boyne River. Observations were integrated into the model using the ensemble Kalman filter. This framework allowed us to integrate observation error, track the variability of model parameters, and simulate daily streamflow and stream temperature across the watershed. Measures of daily model performance included the Nash‐Sutcliffe efficiency, modified Nash‐Sutcliffe efficiency (Ef‐mod), refined index of agreement (dr), and relative bias (Bias). For all calibration sites, estimates of streamflow improved after data assimilation compared to simulations based on initial/default SWAT parameters. Different measures of model performance emerged based on the interarrival times of the observations. Results demonstrate that observations collected by local volunteers, with a certain temporal resolution, can improve SWAT hydrological models and capture central tendency.

     
    more » « less
  4. Abstract

    The production of food, electricity, and treated water is often tracked and managed along political or infrastructure boundaries. Yet, water resources, a critical input in the production of these goods, are delineated along natural landscape features (i.e., watersheds). The boundary mismatch between water resources and the associated production of economic goods conceals hydrologic dependencies and vulnerabilities in the provisioning of Food‐Energy‐Water (FEW) resources. In this study, we pair economic, infrastructure, and hydrologic data to evaluate the production of food, electricity, and treated water within watersheds of the conterminous United States. The US FEW sectors produced 950 million tonnes of crops, 3,973 million MWh of electricity, and supplied water to 263 million people in 2017. FEW production consumed 128 km3of blue water (18%) and 583 km3of green water (82%). Watersheds in central and southern California, the Midwest, and the Southwest have the largest FEW blue water consumption and the greatest exposure to water stress. Nearly three‐fifths of FEW production occurs in regularly water‐stressed watersheds. FEW production in watersheds in the Great Plains and Midwest relies heavily on groundwater to buffer against intra‐ and inter‐annual streamflow variability, while surface reservoir storage buffers against water shortages in all watersheds. We show where FEW production may be susceptible to curtailments due to ongoing groundwater depletion or known infrastructure deficiencies. This study adds to our understanding of how a nation's water resources and associated infrastructure support economic activity, as well as areas where economic activity is exposed to hydrological and infrastructure risks.

     
    more » « less
  5. Abstract

    Subsurface tile drainage (TD) is a dominant agriculture water management practice in the United States (US) to enhance crop production in poorly drained soils. Assessments of field‐level or watershed‐level (<50 km2) hydrologic impacts of TD are becoming common; however, a major gap exists in our understanding of regional (>105 km2) impacts of TD on hydrology. The National Water Model (NWM) is a distributed 1‐km resolution hydrological model designed to provide accurate streamflow forecasts at 2.7 million reaches across the US. The current NWM lacks TD representation which adds considerable uncertainty to streamflow forecasts in heavily tile‐drained areas. In this study, we quantify the performance of the NWM with a newly incorporated tile‐drainage scheme over the heavily tile‐drained Midwestern US. Employing a TD scheme enhanced the uncalibrated NWM performance by about 20–50% of the fully calibrated NWM (Calib). The calibrated NWM with tile drainage (CalibTD) showed enhanced accuracy with higher event hit rates and lower false alarm rates thanCalib.CalibTDshowed better performance in high‐flow estimations as TD increased streamflow peaks (14%), volume (2.3%), and baseflow (11%). Regional water balance analysis indicated that TD significantly reduced surface runoff (−7% to −29%), groundwater recharge (−43% to −50%), evapotranspiration (−7% to −13%), and soil moisture content (−2% to −3%). However, TD significantly increased soil profile lateral flow (27.7%) along with infiltration and soil water storage potential. Overall, our findings highlight the importance of incorporating the TD process into the operational configuration of the NWM.

     
    more » « less