skip to main content


Title: Spatially variable hydrologic impact and biomass production tradeoffs associated with Eucalyptus ( E. grandis ) cultivation for biofuel production in Entre Rios, Argentina
Abstract

Climate change and energy security promote using renewable sources of energy such as biofuels. High woody biomass production achieved from short‐rotation intensive plantations is a strategy that is increasing in many parts of the world. However, broad expansion of bioenergy feedstock production may have significant environmental consequences. This study investigates the watershed‐scale hydrological impacts of Eucalyptus(E. grandis) plantations for energy production in a humid subtropical watershed in Entre Rios province, Argentina. A Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, leaf area index (LAI), and biomass production cycles. The model was used to simulate various Eucalyptusplantation scenarios that followed physically based rules for land use conversion (in various extents and locations in the watershed) to study hydrological effects, biomass production, and the green water footprint of energy production. SWAT simulations indicated that the most limiting factor for plant growth was shallow soils causing seasonal water stress. This resulted in a wide range of biomass productivity throughout the watershed. An optimization algorithm was developed to find the best location for Eucalyptusdevelopment regarding highest productivity with least water impact. E. grandisplantations had higher evapotranspiration rates compared to existing terrestrial land cover classes; therefore, intensive land use conversion to E. grandiscaused a decline in streamflow, with January through March being the most affected months. October was the least‐affected month hydrologically, since high rainfall rates overcame the canopy interception and higher ET rates of E. grandisin this month. Results indicate that, on average, producing 1 kg of biomass in this region uses 0.8 m3of water, and the green water footprint of producing 1 m3fuel is approximately 2150 m3water, or 57 m3water per GJ of energy, which is lower than reported values for wood‐based ethanol, sugar cane ethanol, and soybean biodiesel.

 
more » « less
NSF-PAR ID:
10386058
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
GCB Bioenergy
Volume:
13
Issue:
5
ISSN:
1757-1693
Page Range / eLocation ID:
p. 823-837
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Few long‐term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast‐growing species (Pinus radiata,Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long‐term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long‐term mean. Pre‐drought runoff ratios were <0.2 under 8‐year‐old Eucalyptus; >0.4 under 21‐year‐old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide‐treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.

     
    more » « less
  2. Abstract

    Hydrologic modeling was used to estimate potential changes in nutrients, suspended sediment, and streamflow in various biomass production scenarios with conservation practices under different landscape designs. Two major corn and soybean croplands were selected for study: the South Fork of the Iowa River watershed and the headwater of the Raccoon River watershed. A physically based model, the Soil and Water Assessment Tool, was used to simulate hydrology and water quality under different scenarios with conservation practices and biomass production. Scenarios are based on conservation practices and biomass production; riparian buffer (RB), saturated buffer, and grassed waterways; various stover harvest rates of 30%, 45%, and 70% with and without winter cover crops; and conversion of marginal land to switchgrass. Conservation practices and landscape design with different biomass feedstocks were shown to significantly improve water quality while supporting sustainable biomass production. Model results for nitrogen, phosphorus, and suspended sediments were analyzed temporally at spatial scales that varied from hydrologic response units to the entire watershed. With conservation practices, water quality could potentially improve by reducing nitrogen loads by up to 20%–30% (stover harvest with cover crop), phosphorus loads by 20%–40% (RB), and sediment loads by 30%–70% (stover harvest with cover crop and RB).

     
    more » « less
  3. Over the last decade, autocalibration routines have become commonplace in watershed modeling. This approach is most often used to simulate a streamflow at a basin’s outlet. In alpine settings, spring/early summer snowmelt is by far the dominant signal in this system. Therefore, there is great potential for a modeled watershed to underperform during other times of the year. This tendency has been noted in many prior studies. In this work, the Soil and Water Assessment Tool (SWAT) model was auto-calibrated with the SUFI-2 routine. A mountainous watershed from Idaho was examined (Upper North Fork). In this study, this basin was calibrated using three estimates of evapotranspiration (ET): Moderate Resolution Imagining Spectrometer (MODIS), Simplified Surface Energy Balance, and Global Land Evaporation: the Amsterdam Model. The MODIS product in particular, had the greatest utility in helping to constrain SWAT parameters that have a high sensitivity to ET. Streamflow simulations that utilize these ET parameter values have improved recessional and summertime streamflow performances during calibration (2007 to 2011) and validation (2012 to 2014) periods. Streamflow performance was monitored with standard objective metrics (Bias and Nash Sutcliffe coefficients) that quantified overall, recessional, and summertime peak flows. This approach yielded dramatic enhancements for all three observations. These results demonstrate the utility of this approach for improving watershed modeling fidelity outside the main snowmelt season. 
    more » « less
  4. Abstract

    Small streams often lack reliable hydrological data. Environmental agencies play a key role in providing such data; however, these agencies are often challenged by the growing monitoring needs and lack of funding. Given the spatial mismatch between observed data and small watersheds/headwaters, local volunteers can act as potentially valuable research partners. We examine how CrowdHydrology, a citizen science program that collects stream stage and stream temperature observations, improves a hydrologic model of the Boyne River, Michigan, USA. Volunteers provided observations at four calibration sites with different interarrival times of the observations. We tested whether stream stage and stream temperature observations (measured by volunteers) improved the performance of a Soil and Water Assessment Tool (SWAT) model of the Boyne River. Observations were integrated into the model using the ensemble Kalman filter. This framework allowed us to integrate observation error, track the variability of model parameters, and simulate daily streamflow and stream temperature across the watershed. Measures of daily model performance included the Nash‐Sutcliffe efficiency, modified Nash‐Sutcliffe efficiency (Ef‐mod), refined index of agreement (dr), and relative bias (Bias). For all calibration sites, estimates of streamflow improved after data assimilation compared to simulations based on initial/default SWAT parameters. Different measures of model performance emerged based on the interarrival times of the observations. Results demonstrate that observations collected by local volunteers, with a certain temporal resolution, can improve SWAT hydrological models and capture central tendency.

     
    more » « less
  5. Abstract

    On the Arctic Coastal Plain (ACP) in northern Alaska (USA), permafrost and abundant surface‐water storage define watershed hydrological processes. In the last decades, the ACP landscape experienced extreme climate events and increased lake water withdrawal (LWW) for infrastructure construction, primarily ice roads and industrial operations. However, their potential (combined) effects on streamflow are relatively underexplored. Here, we applied the process‐based, spatially distributed hydrological and thermal Water Balance Simulation Model (10 m spatial resolution) to the 30 km2Crea Creek watershed located on the ACP. The impacts of documented seasonal climate extremes and LWW were evaluated on seasonal runoff (May–August), including minimum 7‐day mean flow (MQ7), the recovery time of MQ7 to pre‐perturbation conditions, and the duration of streamflow conditions that prevents fish passage. Low‐rainfall scenarios (21% of normal, one to three summers in a row) caused a larger reduction in MQ7 (−56% to −69%) than LWW alone (−44% to −58%). Decadal‐long consecutive LWW under average climate conditions resulted in a new equilibrium in low flow and seasonal runoff after 3 years that included a disconnected stream network, a reduced watershed contributing area (54% of total watershed area), and limited fish passage of 20 days (vs. 6 days under control conditions) throughout summer. Our results highlight that, even under current average climatic conditions, LWW is not offset by same‐year snowmelt as currently assumed in land management regulations. Effective land management would therefore benefit from considering the combined impact of climate change and industrial LWWs.

     
    more » « less