As the volume and sophistication of cyber-attacks grow, cybersecurity researchers, engineers and practitioners rely on advanced cyberinfrastructure (CI) techniques like big data and machine learning, as well as advanced CI platforms, e.g., cloud and high-performance computing (HPC) to assess cyber risks, identify and mitigate threats, and achieve defense in depth. There is a training gap where current cybersecurity curricula at many universities do not introduce advanced CI techniques to future cybersecurity workforce. At Old Dominion University (ODU), we are bridging this gap through an innovative training program named DeapSECURE (Data-Enabled Advanced Training Program for Cyber Security Research and Education). We developed six non-degree training modules to expose cybersecurity students to advanced CI platforms and techniques rooted in big data, machine learning, neural networks, and high-performance programming. Each workshop includes a lecture providing the motivation and context for a CI technique, which is then examined during a hands-on session. The modules are delivered through (1) monthly workshops for ODU students, and (2) summer institutes for students from other universities and Research Experiences for Undergraduates participants. Future plan for the training program includes an online continuous learning community as an extension to the workshops, and all learning materials available as open educational resources, which will facilitate widespread adoption, adaptations, and contributions. The project leverages existing partnerships to ensure broad participation and adoption of advanced CI techniques in the cybersecurity community. We employ a rigorous evaluation plan rooted in diverse metrics of success to improve the curriculum and demonstrate its effectiveness.
more »
« less
DeapSECURE Computational Training for Cybersecurity: Progress Toward Widespread Community Adoption
The Data-Enabled Advanced Computational Training Program for Cybersecurity Research and Education (DeapSECURE) is a non-degree training consisting of six modules covering a broad range of cyberinfrastructure techniques, including high performance computing, big data, machine learning and advanced cryptography, aimed at reducing the gap between current cybersecurity curricula and requirements needed for advanced research and industrial projects. Since 2020, these lesson modules have been updated and retooled to suit fully-online delivery. Hands-on activities were reformatted to accommodate self-paced learning. In this paper, we summarize the four years of the project comparing in-person and on-line only instruction methods as well as outlining lessons learned. The module content and hands-on materials are being released as open-source educational resources. We also indicate our future direction to scale up and increase adoption of the DeapSECURE training program to benefit cybersecurity research everywhere.
more »
« less
- Award ID(s):
- 1829771
- PAR ID:
- 10386277
- Date Published:
- Journal Name:
- Journal of computational science education
- ISSN:
- 2153-4136
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
T3-CIDERS is a train-the-trainer program to increase the adoption of advanced cyberinfrastructure (CI) and data skills into the fabric of research and education in cybersecurity and cyber-related disciplines. T3-CIDERS trains faculty, researchers, and students as “future trainers” (FTs) with hands-on technical and instructional skills to enable more people to effectively leverage CI in cybersecurity. The program includes a series of technical pre-training modules, a weeklong summer institute, ongoing learning engagements conducted over an academic year; it culminates with the FTs conducting locally tailored CI-infused training events at their respective home institutions. Ultimately, T3-CIDERS aims to build a “CI+cybersecurity” community of practice as the cohort continues to practice and teach CI skills in their teaching and research activities. This paper describes the vision and implementation of T3-CIDERS with the first cohort starting in year 2024. Based on the lessons learned through the in-person cohorts, a fully online program will be developed to expand the reach of T3-CIDERS to a broader audience. T3-CIDERS responds to the need to close the CI and data skill gap to meet the increasing challenges in securing the digital world.more » « less
-
This paper presents an innovative approach to DevOps security education, addressing the dynamic landscape of cybersecurity threats. We propose a student-centered learning methodology by developing comprehensive hands-on learning modules. Specifically, we introduce labware modules designed to automate static security analysis, empowering learners to identify known vulnerabilities efficiently. These modules offer a structured learning experience with pre-lab, hands-on, and post-lab sections, guiding students through DevOps concepts and security challenges. In this paper, we introduce hands-on learning modules that familiarize students with recognizing known security flaws through the application of Git Hooks. Through practical exercises with real-world code examples containing security flaws, students gain proficiency in detecting vulnerabilities using relevant tools. Initial evaluations conducted across educational institutions indicate that these hands-on modules foster student interest in software security and cybersecurity and equip them with practical skills to address DevOps security vulnerabilities.more » « less
-
This paper presents an innovative approach to DevOps security education, addressing the dynamic landscape of cybersecurity threats. We propose a student-centered learning methodology by developing comprehensive hands-on learning modules. Specifically, we introduce labware modules designed to automate static security analysis, empowering learners to identify known vulnerabilities efficiently. These modules offer a structured learning experience with pre-lab, hands-on, and post-lab sections, guiding students through DevOps concepts and security challenges. In this paper, we introduce hands-on learning modules that familiarize students with recognizing known security flaws through the application of Git Hooks. Through practical exercises with real-world code examples containing security flaws, students gain proficiency in detecting vulnerabilities using relevant tools. Initial evaluations conducted across educational institutions indicate that these hands-on modules foster student interest in software security and cybersecurity and equip them with practical skills to address DevOps security vulnerabilities.more » « less
-
Artificial Intelligence (AI) technologies have become increasingly pervasive in our daily lives. Recent breakthroughs such as large language models (LLMs) are being increasingly used globally to enhance their work methods and boost productivity. However, the advent of these technologies has also brought forth new challenges in the critical area of social cybersecurity. While AI has broadened new frontiers in addressing social issues, such as cyberharassment and cyberbullying, it has also worsened existing social issues such as the generation of hateful content, bias, and demographic prejudices. Although the interplay between AI and social cybersecurity has gained much attention from the research community, very few educational materials have been designed to engage students by integrating AI and socially relevant cybersecurity through an interdisciplinary approach. In this paper, we present our newly designed open-learning platform, which can be used to meet the ever-increasing demand for advanced training in the intersection of AI and social cybersecurity. The designed platform, which consists of hands-on labs and education materials, incorporates the latest research results in AI-based social cybersecurity, such as cyberharassment detection, AI bias and prejudice, and adversarial attacks on AI-powered systems, are implemented using Jupyter Notebook, an open-source interactive computing platform for effective hands-on learning. Through a user study of 201 students from two universities, we demonstrate that students have a better understanding of AI-based social cybersecurity issues and mitigation after doing the labs, and they are enthusiastic about learning to use AI algorithms in addressing social cybersecurity challenges for social good.more » « less
An official website of the United States government

