skip to main content


Title: Photonic effects in the non-equilibrium optical response of two-dimensional semiconductors

Transient absorption spectroscopy is a powerful tool to monitor the out-of-equilibrium optical response of photoexcited semiconductors. When this method is applied to two-dimensional semiconductors deposited on different substrates, the excited state optical properties are inferred from the pump-induced changes in the transmission/reflection of the probe,i.e., ΔT/Tor ΔR/R. Transient optical spectra are often interpreted as the manifestation of the intrinsic optical response of the monolayer, including effects such as the reduction of the exciton oscillator strength, electron-phonon coupling or many-body interactions like bandgap renormalization, trion or biexciton formation. Here we scrutinize the assumption that one can determine the non-equilibrium optical response of the TMD without accounting for the substrate used in the experiment. We systematically investigate the effect of the substrate on the broadband transient optical response of monolayer MoS2(1L-MoS2) by measuring ΔT/Tand ΔR/Rwith different excitation photon energies. Employing the boundary conditions given by the Fresnel equations, we analyze the transient transmission/reflection spectra across the main excitonic resonances of 1L-MoS2. We show that pure interference effects induced by the different substrates explain the substantial differences (i.e., intensity, peak energy and exciton linewidth) observed in the transient spectra of the same monolayer. We thus demonstrate that the substrate strongly affects the magnitude of the exciton energy shift and the change of the oscillator strength in the transient optical spectra. By highlighting the key role played by the substrate, our results set the stage for a unified interpretation of the transient response of optoelectronic devices based on a broad class of TMDs.

 
more » « less
NSF-PAR ID:
10386378
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
31
Issue:
1
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A comprehensive experimental study on optical properties and photocarrier dynamics in Bi2O2Se monolayers and nanoplates is presented. Large and uniform Bi2O2Se nanoplates with various thicknesses down to the monolayer limit are fabricated. In nanoplates, a direct optical transition near 720 nm is identified by optical transmission, photoluminescence, and transient absorption spectroscopic measurements and is attributed to the transition between the valence and conduction bands in the Γ valley. Time‐resolved differential reflection measurements reveal ultrafast carrier thermalization and energy relaxation processes and a photocarrier recombination lifetime of about 200 ps in nanoplates. Furthermore, by spatially resolving the differential reflection signal, a photocarrier diffusion coefficient of about 4.8 cm2s−1is obtained, corresponding to a mobility of about 180 cm2V−1s−1. A similar direct transition is also observed in monolayer Bi2O2Se, suggesting that the states in the Γ valley do not change significantly with the thickness. The temporal dynamics of the excitons in the monolayer is quite different from the nanoplates, with a strong saturation effect and fast exciton–exciton annihilation at high densities. Spatially and temporally resolved measurements yield an exciton diffusion coefficient of about 20 cm2s−1.

     
    more » « less
  2. Abstract

    In recent years, the excitation of surface phonon polaritons (SPhPs) in van der Waals materials received wide attention from the nanophotonics community. Alpha-phase Molybdenum trioxide (α-MoO3), a naturally occurring biaxial hyperbolic crystal, emerged as a promising polaritonic material due to its ability to support SPhPs for three orthogonal directions at different wavelength bands (range 10–20μm). Here, we report on the fabrication, structural, morphological, and optical IR characterization of large-area (over 1 cm2size)α-MoO3polycrystalline film deposited on fused silica substrates by pulsed laser deposition. Due to the random grain distribution, the thin film does not display any optical anisotropy at normal incidence. However, the proposed fabrication method allows us to achieve a singleα-phase, preserving the typical strong dispersion related to the phononic response ofα-MoO3flakes. Remarkable spectral properties of interest for IR photonics applications are reported. For instance, a polarization-tunable reflection peak at 1006 cm−1with a dynamic range of ΔR= 0.3 and a resonanceQ-factor as high as 53 is observed at 45° angle of incidence. Additionally, we report the fulfillment of an impedance matching condition with the SiO2substrate leading to a polarization-independent almost perfect absorption condition (R< 0.01) at 972 cm−1which is maintained for a broad angle of incidence. In this framework our findings appear extremely promising for the further development of mid-IR lithography-free, scalable films, for efficient and large-scale sensors, filters, thermal emitters, and label-free biochemical sensing devices operating in the free space, using far-field detection setups.

     
    more » « less
  3.  
    more » « less
  4. Abstract

    Doping is a fundamental requirement for tuning and improving the properties of conventional semiconductors. Recent doping studies including niobium (Nb) doping of molybdenum disulfide (MoS2) and tungsten (W) doping of molybdenum diselenide (MoSe2) have suggested that substitutional doping may provide an efficient route to tune the doping type and suppress deep trap levels of 2D materials. To date, the impact of the doping on the structural, electronic, and photonic properties of in situ‐doped monolayers remains unanswered due to challenges including strong film substrate charge transfer, and difficulty achieving doping concentrations greater than 0.3 at%. Here, in situ rhenium (Re) doping of synthetic monolayer MoS2with ≈1 at% Re is demonstrated. To limit substrate film charge transfer,r‐plane sapphire is used. Electronic measurements demonstrate that 1 at% Re doping achieves nearly degenerate n‐type doping, which agrees with density functional theory calculations. Moreover, low‐temperature photoluminescence indicates a significant quench of the defect‐bound emission when Re is introduced, which is attributed to the MoO bond and sulfur vacancies passivation and reduction in gap states due to the presence of Re. The work presented here demonstrates that Re doping of MoS2is a promising route toward electronic and photonic engineering of 2D materials.

     
    more » « less
  5. Abstract

    Pivotal to functional van der Waals stacked flexible electronic/excitonic/spintronic/thermoelectric chips is the synergy amongst constituent layers. However; the current techniques viz. sequential chemical vapor deposition, micromechanical/wet‐chemical transfer are mostly limited due to diffused interfaces, and metallic remnants/bubbles at the interface. Inter‐layer‐coupled 2+δ‐dimensional materials, as a new class of materials can be significantly suitable for out‐of‐plane carrier transport and hence prompt response in prospective devices. Here, the discovery of the use of exotic electric field ≈106 V cm1(at microwave hot‐spot) and 2 thermomechanical conditions i.e. pressure ≈1 MPa, T ≈ 200 °C (during solvothermal reaction) to realize 2+δ‐dimensional materials is reported. It is found that PzPzchemical bonds form between the component layers, e.g., CB and CN in G‐BN, MoN and MoB in MoS2‐BN hybrid systems as revealed by X‐ray photoelectron spectroscopy. New vibrational peaks in Raman spectra (BC ≈1320 cm–1for the G‐BN system and MoB ≈365 cm–1for the MoS2‐BN system) are recorded. Tunable mid‐gap formation, along with diodic behavior (knee voltage ≈0.7 V, breakdown voltage ≈1.8 V) in the reduced graphene oxide‐reduced BN oxide (RGO‐RBNO) hybrid system is also observed. Band‐gap tuning in MoS2‐BN system is observed. Simulations reveal stacking‐dependent interfacial charge/potential drops, hinting at the feasibility of next‐generation functional devices/sensors.

     
    more » « less