skip to main content


Title: Multistressor global change drivers reduce hatch and viability of Lingcod embryos, a benthic egg layer in the California Current System
Abstract

Early life history stages of marine fishes are often more susceptible to environmental stressors than adult stages. This vulnerability is likely exacerbated for species that lay benthic egg masses bound to substrate because the embryos cannot evade locally unfavorable environmental conditions. Lingcod (Ophiodon elongatus), a benthic egg layer, is an ecologically and economically significant predator in the highly-productive California Current System (CCS). We ran a flow-through mesocosm experiment that exposed Lingcod eggs collected from Monterey Bay, CA to conditions we expect to see in the central CCS by the year 2050 and 2100. Exposure to temperature, pH, and dissolved oxygen concentrations projected by the year 2050 halved the successful hatch of Lingcod embryos and significantly reduced the size of day-1 larvae. In the year 2100 treatment, viable hatch plummeted (3% of normal), larvae were undersized (83% of normal), yolk reserves were exhausted (38% of normal), and deformities were widespread (94% of individuals). This experiment is the first to expose marine benthic eggs to future temperature, pH, and dissolved oxygen conditions in concert. Lingcod are a potential indicator species for other benthic egg layers for which global change conditions may significantly diminish recruitment rates.

 
more » « less
NSF-PAR ID:
10386497
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kelp forests of the California Current System have experienced prolonged marine heatwave (MHW) events that overlap in time with the phenology of life history events (e.g., gametogenesis and spawning) of many benthic marine invertebrates. To study the effect of thermal stress from MHWs during gametogenesis in the purple sea urchin ( Strongylocentrotus purpuratus ) and further, whether MHWs might induce transgenerational plasticity (TGP) in thermal tolerance of progeny, adult urchins were acclimated to two conditions in the laboratory – a MHW temperature of 18°C and a non-MHW temperature of 13°C. Following a four-month long acclimation period (October–January), adults were spawned and offspring from each parental condition were reared at MHW (18°C) and non-MHW temperatures (13°C), creating a total of four embryo treatment groups. To assess transgenerational effects for each of the four groups, we measured thermal tolerance of hatched blastula embryos in acute thermal tolerance trials. Embryos from MHW-acclimated females were more thermally tolerant with higher LT 50 values as compared to progeny from non-MHW-acclimated females. Additionally, there was an effect of female acclimation state on offspring body size at two stages of embryonic development - early gastrulae and prism, an early stage echinopluteus larvae. To assess maternal provisioning as means to also alter embryo performance, we assessed gamete traits from the differentially acclimated females, by measuring size and biochemical composition of eggs. MHW-acclimated females had eggs with higher protein concentrations, while egg size and lipid content showed no differences. Our results indicate that TGP plays a role in altering the performance of progeny as a function of the thermal history of the female, especially when thermal stress coincides with gametogenesis. In addition, the data on egg provisioning show that maternal experience can influence embryo traits via egg protein content. Although this is a laboratory-based study, the results suggest that TGP may play a role in the resistance and tolerance of S. purpuratus early stages in the natural kelp forest setting. 
    more » « less
  2. Abstract. Global projections for ocean conditions in 2100 predict that the North Pacific will experience some of the largest changes. Coastal processes that drive variability in the region can alter these projected changes but are poorly resolved by global coarse-resolution models. We quantify the degree to which local processes modify biogeochemical changes in the eastern boundary California Current System (CCS) using multi-model regionally downscaled climate projections of multiple climate-associated stressors (temperature, O2, pH, saturation state (Ω), and CO2). The downscaled projections predict changes consistent with the directional change from the global projections for the same emissions scenario. However, the magnitude and spatial variability of projected changes are modified in the downscaled projections for carbon variables. Future changes in pCO2 and surface Ω are amplified, while changes in pH and upper 200 m Ω are dampened relative to the projected change in global models. Surface carbon variable changes are highly correlated to changes in dissolved inorganic carbon (DIC), pCO2 changes over the upper 200 m are correlated to total alkalinity (TA), and changes at the bottom are correlated to DIC and nutrient changes. The correlations in these latter two regions suggest that future changes in carbon variables are influenced by nutrient cycling, changes in benthic–pelagic coupling, and TA resolved by the downscaled projections. Within the CCS, differences in global and downscaled climate stressors are spatially variable, and the northern CCS experiences the most intense modification. These projected changes are consistent with the continued reduction in source water oxygen; increase in source water nutrients; and, combined with solubility-driven changes, altered future upwelled source waters in the CCS. The results presented here suggest that projections that resolve coastal processes are necessary for adequate representation of the magnitude of projected change in carbon stressors in the CCS. 
    more » « less
  3. null (Ed.)
    Species-specific sperm−egg interactions are essential for sexual reproduction. Broadcast spawning of marine organisms is under particularly stringent conditions, since eggs released into the water column can be exposed to multiple different sperm. Bindin isolated from the sperm acrosome results in insoluble particles that cause homospecific eggs to aggregate, whereas no aggregation occurs with heterospecific eggs. Therefore, Bindin is concluded to play a critical role in fertilization, yet its function has never been tested. Here we report that Cas9-mediated inactivation of the bindin gene in a sea urchin results in perfectly normal-looking embryos, larvae, adults, and gametes in both males and females. What differed between the genotypes was that the bindin −/− sperm never fertilized an egg, functionally validating Bindin as an essential gamete interaction protein at the level of sperm–egg cell surface binding. 
    more » « less
  4. Anthropogenic climate change is projected to affect marine ecosystems by challenging the environmental tolerance of individuals. Marine fishes may be particularly vulnerable to emergent climate stressors during early life stages. Here we focus on embryos of Pacific herring(Clupea pallasii), an important forage fish species widely distributed across the North Pacific. Embryos were reared under a range of temperatures (10-16°C) crossed with twopCO2levels (600 and 2000μatm) to investigate effects on metabolism and survival. We further tested how elevatedpCO2affects critical thermal tolerance (CTmax) by challenging embryos to short-term temperature fluctuations. Experiments were repeated on embryos collected from winter and spring spawning populations to determine if spawning phenology corresponds with different limits of environmental tolerance in offspring. We found that embryos could withstand acute exposure to 20°C regardless of spawning population or incubation treatment, but that survival was greatly reduced after 2-3 hours at 25°C. We found thatpCO2had limited effects onCTmax. The survival of embryos reared under chronically warm conditions (12°, 14°, or 16°C) was significantly lower relative to 10°C treatments in both populations. Oxygen consumption rates (MO2) were also higher at elevated temperatures andpCO2levels. However, heart contraction measurements made 48 hours afterCTmaxexposure revealed a greater increase in heart rate in embryos reared at 10°C compared to 16°C, suggesting acclimation at higher incubation temperatures. Our results indicate that Pacific herring are generally tolerant ofpCO2but are vulnerable to acute temperature stress. Importantly, spring-spawning embryos did not clearly exhibit a higher tolerance to heat stress compared to winter offspring.

     
    more » « less
  5. Synopsis

    Climate change is increasing both environmental temperatures and droughts. Many ectotherms respond behaviorally to heat, thereby avoiding damage from extreme temperatures. Within species, thermal tolerance varies with factors such as hydration as well as ontogenetic stage. Many tropical anurans lay terrestrial eggs, relying on environmental moisture for embryonic development. These eggs are vulnerable to dehydration, and embryos of some species can hatch prematurely to escape from drying eggs. Warmer temperatures can accelerate development and thus hatching, but excess heat can kill embryos. Thus, we hypothesize that embryos may show a behavioral thermal tolerance limit, hatching prematurely to avoid potentially lethal warming. If so, because warming and drying are often associated, we hypothesize this limit, measurable as a voluntary thermal maximum, may depend on hydration. We manipulated the hydration of the terrestrial eggs of Agalychnis callidryas, in intact clutches and egg-groups isolated from clutch jelly, then warmed them to assess if embryos hatch early as a behavioral response to high temperatures and whether their thermal tolerance varies with hydration or surrounding structure. We discovered that heating induces hatching; these embryos show a behavioral escape-hatching response that enables them to avoid potentially lethal warming. Hydrated eggs and clutches lost more water and warmed more slowly than dehydrated ones, indicating that hydration buffers embryos from environmental warming via evaporative cooling. Embryos in hydrated clutches tolerated greater warming before hatching and suffered higher mortality, suggesting their behavioral Thermal Safety Margin is small. In contrast, lower thermal tolerance protected dry embryos, and those isolated from clutch jelly, from lethal warming. Heat-induced hatching offers a convenient behavioral assay for the thermal tolerance of terrestrial anuran embryos and the interactive effects of warming and dehydration at an early life stage. This work expands the set of threats against which embryos use hatching in self-defense, creating new opportunities for comparative studies of thermal tolerance as well as integrative studies of self-defense mechanisms at the egg stage.

     
    more » « less