skip to main content


Title: Black Hole Images as Tests of General Relativity: Effects of Plasma Physics
Abstract

The horizon-scale images of black holes obtained with the Event Horizon Telescope have provided new probes of their metrics and tests of general relativity. The images are characterized by a bright, near-circular ring from the gravitationally lensed emission from the hot plasma and a deep central depression cast by the black hole. The metric tests rely on the fact that the bright ring closely traces the boundary of the black hole shadow with a small displacement that has been quantified using simulations. In this paper we develop a self-consistent covariant analytic model of the accretion flow that spans a broad range of plasma conditions and black hole properties to explore the general validity of this result. We show that, for any physical model of the accretion flow, the ring always encompasses the outline of the shadow and is not displaced by it by more than half the ring width. This result is a consequence of conservation laws and basic thermodynamic considerations and does not depend on the microphysics of the plasma or the details of the numerical simulations. We also present a quantitative measurement of the bias between the bright ring and the shadow radius based on the analytical models.

 
more » « less
NSF-PAR ID:
10386507
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
941
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 88
Size(s):
["Article No. 88"]
Sponsoring Org:
National Science Foundation
More Like this
  1. The horizon-scale images of black holes obtained with the Event Horizon Telescope have provided new probes of their metrics and tests of General Relativity. The images are characterized by a bright, near circular ring from the gravitationally lensed emission from the hot plasma and a deep central depression cast by the black hole. The metric tests rely on fact that the bright ring closely traces the boundary of the black hole shadow with a small displacement that has been quantified using simulations. In this paper we develop a self-consistent covariant analytic model of the accretion flow that spans a broad range of plasma conditions and black-hole properties to explore the general validity of this result. We show that, for any physical model of the accretion flow, the ring always encompasses the outline of the shadow and is not displaced by it by more than half the ring width. This result is a consequence of conservation laws and basic thermodynamic considerations and does not depend on the microphysics of the plasma or the details of the numerical simulations. We also present a quantitative measurement of the bias between the bright ring and the shadow radius based on the analytical models. 
    more » « less
  2. The image of a supermassive black hole surrounded by an optically-thin, radiatively-inefficient accretion flow, like that observed with the Event Horizon Telescope, is characterized by a bright ring of emission surrounding the black-hole shadow. In the Kerr spacetime this bright ring, when narrow, closely traces the boundary of the shadow and can, with appropriate calibration, serve as its proxy. The present paper expands the validity of this statement by considering two particular spacetime geometries: a solution to the field equations of a modified gravity theory and another that parametrically deviates from Kerr but recovers the Kerr spacetime when its deviation parameters vanish. A covariant, axisymmetric analytic model of the accretion flow based on conservation laws and spanning a broad range of plasma conditions is utilized to calculate synthetic non-Kerr black-hole images, which are then analysed and characterized. We find that in all spacetimes: (i) it is the gravitationally-lensed unstable photon orbit that plays the critical role in establishing the diameter of the rings observed in black-hole images, not the event horizon or the innermost stable circular orbit, (ii) bright rings in these images scale in size with, and encompass, the boundaries of the black-hole shadows, even when deviating significantly from Kerr, and (iii) uncertainties in the physical properties of the accreting plasma introduce subdominant corrections to the relation between the diameter of the image and the diameter of the black-hole shadow. These results provide theoretical justification for using black-hole images to probe and test the spacetimes of supermassive black holes. 
    more » « less
  3. ABSTRACT

    Horizon-scale observations of the jetted active galactic nucleus M87 are compared with simulations spanning a broad range of dissipation mechanisms and plasma content in three-dimensional general relativistic flows around spinning black holes. Observations of synchrotron radiation from radio to X-ray frequencies can be compared with simulations by adding prescriptions specifying the relativistic electron-plus-positron distribution function and associated radiative transfer coefficients. A suite of time-varying simulations with various spins, plasma magnetizations and turbulent heating and equipartition-based emission prescriptions (and piecewise combinations thereof) is chosen to represent distinct possibilities for the M87 jet/accretion flow/black hole system. Simulation jet morphology, polarization, and variation are then ‘observed’ and compared with real observations to infer the rules that govern the polarized emissivity. Our models support several possible spin/emission model/plasma composition combinations supplying the jet in M87, whose black hole shadow has been observed down to the photon ring at 230 GHz by the Event Horizon Telescope (EHT). Net linear polarization and circular polarization constraints favour magnetically arrested disc (MAD) models whereas resolved linear polarization favours standard and normal evolution (SANE) in our parameter space. We also show that some MAD cases dominated by intrinsic circular polarization have near-linear V/I dependence on un-paired electron or positron content while SANE polarization exhibits markedly greater positron-dependent Faraday effects – future probes of the SANE/MAD dichotomy and plasma content with the EHT. This is the second work in a series also applying the ‘observing’ simulations methodology to near-horizon regions of supermassive black holes in Sgr A* and 3C 279.

     
    more » « less
  4. Abstract

    Event Horizon Telescope (EHT) observations have revealed a bright ring of emission around the supermassive black hole at the center of the M87 galaxy. EHT images in linear polarization have further identified a coherent spiral pattern around the black hole, produced from ordered magnetic fields threading the emitting plasma. Here we present the first analysis of circular polarization using EHT data, acquired in 2017, which can potentially provide additional insights into the magnetic fields and plasma composition near the black hole. Interferometric closure quantities provide convincing evidence for the presence of circularly polarized emission on event-horizon scales. We produce images of the circular polarization using both traditional and newly developed methods. All methods find a moderate level of resolved circular polarization across the image (〈∣v∣〉 < 3.7%), consistent with the low image-integrated circular polarization fraction measured by the Atacama Large Millimeter/submillimeter Array (∣vint∣ < 1%). Despite this broad agreement, the methods show substantial variation in the morphology of the circularly polarized emission, indicating that our conclusions are strongly dependent on the imaging assumptions because of the limited baseline coverage, uncertain telescope gain calibration, and weakly polarized signal. We include this upper limit in an updated comparison to general relativistic magnetohydrodynamic simulation models. This analysis reinforces the previously reported preference for magnetically arrested accretion flow models. We find that most simulations naturally produce a low level of circular polarization consistent with our upper limit and that Faraday conversion is likely the dominant production mechanism for circular polarization at 230 GHz in M87*.

     
    more » « less
  5. In April 2019, the Event Horizon Telescope (EHT) collaboration revealed the first image of the candidate super- massive black hole (SMBH) at the centre of the giant elliptical galaxy Messier 87 (M87). This event-horizon-scale image shows a ring of glowing plasma with a dark patch at the centre, which is interpreted as the shadow of the black hole. This breakthrough result, which represents a powerful confirmation of Einstein’s theory of gravity, or general relativity, was made possible by assembling a global network of radio telescopes operating at millimetre wavelengths that for the first time included the Atacama Large Millimeter/submillimeter Array (ALMA). The addition of ALMA as an anchor station has enabled a giant leap forward by increasing the sensitivity limits of the EHT by an order of magnitude, effectively turning it into an imaging array. The published image demonstrates that it is now possible to directly study the event horizon shadows of SMBHs via electromagnetic radiation, thereby transforming this elusive frontier from a mathematical concept into an astrophysical reality. The expansion of the array over the next few years will include new stations on different continents — and eventually satellites in space. This will provide progressively sharper and higher-fidelity images of SMBH candidates, and potentially even movies of the hot plasma orbiting around SMBHs. These improvements will shed light on the processes of black hole accretion and jet formation on event-horizon scales, thereby enabling more precise tests of general relativity in the truly strong field regime. 
    more » « less