skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ELF: High-Performance In-band Network Measurement
Over the past decades, active measurements have been used to gain a deep and broad understanding of routing, latency, packet loss, etc. Unfortunately, typical active measure- ments are ill-suited for elucidating the performance of individual application flows due to route changes, load balancing, transient queues, and other dynamic effects. Recent efforts have identified in-band measurement, in which probes are injected into an exist- ing application flow, as a promising approach for gaining insight into network behaviors that affect application flows. However, the use of libpcap by these efforts poses significant performance bottlenecks and is at odds with high-fidelity measurements. In this paper, we explore a new implementation pathway for in-band application flow monitoring: the extended Berkeley Packet Filter (eBPF), which enables safe programs to be run within the OS kernel. We develop an eBPF-based in-band flow monitoring tool called ELF that sends hop-limited probes within an existing flow. We compare the performance of our eBPF- based approach with the use of libpcap, finding that libpcap introduces undesirable high variability into the probe emission process. We illustrate the potential of ELF by monitoring hourly Network Diagnostic Tool (NDT) throughput measurements to 12 Measurement Lab destinations for one week. We observe that at least 90% of routers traversed by the in-band probes respond positively, with no apparent rate limiting. We examine how the hop-by-hop evolution of network queues is exposed using ELF in- band probes, illustrate the impact of mid-flow route changes, and show that load balancing may inequitably affect throughput.  more » « less
Award ID(s):
1814537
PAR ID:
10386603
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IFIP Network Traffic Measurement and Analysis Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Edge data centers are an appealing place for telecommunication providers to offer in-network processing such as VPN services, security monitoring, and 5G. Placing these network services closer to users can reduce latency and core network bandwidth, but the deployment of network functions at the edge poses several important challenges. Edge data centers have limited resource capacity, yet network functions are re-source intensive with strict performance requirements. Replicating services at the edge is needed to meet demand, but balancing the load across multiple servers can be challenging due to diverse service costs, server and flow heterogeneity, and dynamic workload conditions. In this paper, we design and implement a model-based load balancer EdgeBalance for edge network data planes. EdgeBalance predicts the CPU demand of incoming traffic and adaptively distributes flows to servers to keep them evenly balanced. We overcome several challenges specific to network processing at the edge to improve throughput and latency over static load balancing and monitoring-based approaches. 
    more » « less
  2. 5G New Radio cellular networks are designed to provide high Quality of Service for application on wirelessly connected devices. However, changing conditions of the wireless last hop can degrade application performance, and the applications have no visibility into the 5G Radio Access Network (RAN). Most 5G network operators run closed networks, limiting the potential for co-design with the wider-area internet and user applications. This paper demonstrates NR-Scope, a passive, incrementally-deployable, and independently-deployable Standalone 5G network telemetry system that can passively measure fine-grained RAN capacity, latency, and retransmission information. Application servers can take advantage of the measurements to achieve better millisecond scale, application-level decisions on offered load and bit rate adaptation than end-to-end latency measurements or end-to-end packet losses currently permit. We demonstrate the performance of NR-Scope by decoding the downlink control information (DCI) for downlink and uplink traffic of a 5G Standalone base station in real-time. 
    more » « less
  3. null (Ed.)
    Container networking, which provides connectivity among containers on multiple hosts, is crucial to building and scaling container-based microservices. While overlay networks are widely adopted in production systems, they cause significant performance degradation in both throughput and latency compared to physical networks. This paper seeks to understand the bottlenecks of in-kernel networking when running container overlay networks. Through profiling and code analysis, we find that a prolonged data path, due to packet transformation in overlay networks, is the culprit of performance loss. Furthermore, existing scaling techniques in the Linux network stack are ineffective for parallelizing the prolonged data path of a single network flow. We propose FALCON, a fast and balanced container networking approach to scale the packet processing pipeline in overlay networks. FALCON pipelines software interrupts associated with different network devices of a single flow on multiple cores, thereby preventing execution serialization of excessive software interrupts from overloading a single core. FALCON further supports multiple network flows by effectively multiplexing and balancing software interrupts of different flows among available cores. We have developed a prototype of FALCON in Linux. Our evaluation with both micro-benchmarks and real-world applications demonstrates the effectiveness of FALCON, with significantly improved performance (by 300% for web serving) and reduced tail latency (by 53% for data caching). 
    more » « less
  4. null (Ed.)
    This paper introduces a hierarchical traffic model for spread measurement of network traffic flows. The hierarchical model, which aggregates lower level flows into higher-level flows in a hierarchical structure, will allow us to measure network traffic at different granularities at once to support diverse traffic analysis from a grand view to fine-grained details. The spread of a flow is the number of distinct elements (under measurement) in the flow, where the flow label (that identifies packets belonging to the flow) and the elements (which are defined based on application need) can be found in packet headers or payload. Traditional flow spread estimators are designed without hierarchical traffic modeling in mind, and incur high overhead when they are applied to each level of the traffic hierarchy. In this paper, we propose a new Hierarchical Virtual bitmap Estimator (HVE) that performs simultaneous multi-level traffic measurement, at the same cost of a traditional estimator, without degrading measurement accuracy. We implement the proposed solution and perform experiments based on real traffic traces. The experimental results demonstrate that HVE improves measurement throughput by 43% to 155%, thanks to the reduction of perpacket processing overhead. For small to medium flows, its measurement accuracy is largely similar to traditional estimators that work at one level at a time. For large aggregate and base flows, its accuracy is better, with up to 97% smaller error in our experiments. 
    more » « less
  5. NextG cellular networks are designed to meet Quality of Service requirements for various applications in and beyond smartphones and mobile devices. However, lacking introspection into the 5G Radio Access Network (RAN) application and transport layer designers are ill-poised to cope with the vagaries of the wireless last hop to a mobile client, while 5G network operators run mostly closed networks, limiting their potential for co-design with the wider internet and user applications. This paper presents NR-Scope, a passive, incrementally-deployable, and independently-deployable Standalone 5G network telemetry system that can stream fine-grained RAN capacity, latency, and retransmission information to application servers to enable better millisecond scale, application-level decisions on offered load and bit rate adaptation than end-to-end latency measurements or end-to-end packet losses currently permit. Our experimental evaluation on various 5G Standalone base stations demonstrates NR-Scope can achieve less than 0.1% throughput error estimation for every UE in a RAN. The code is available at https://github.com/PrincetonUniversity/NR-Scope. 
    more » « less