The main contribution of this paper is GoJournal, a verified, concurrent journaling system that provides atomicity for storage applications, together with Perennial 2.0, a framework for formally specifying and verifying concurrent crash-safe systems. GoJournal’s goal is to bring the advantages of journaling for code to specs and proofs. Perennial 2.0 makes this possible by introducing several techniques to formalize GoJournal’s specification and to manage the complexity in the proof of GoJournal’s implementation. Lifting predicates and crash framing make the specification easy to use for developers, and logically atomic crash specifications allow for modular reasoning in GoJournal, making the proof tractable despite complex concurrency and crash interleavings. GoJournal is implemented in Go, and Perennial is implemented in the Coq proof assistant. While verifying GoJournal, we found one serious concurrency bug, even though GoJournal has many unit tests. We built a functional NFSv3 server, called GoNFS, to use GoJournal. Performance experiments show that GoNFS provides similar performance (e.g., at least 90% throughput across several benchmarks on an NVMe disk) to Linux’s NFS server exporting an ext4 file system, suggesting that GoJournal is a competitive journaling system. We also verified a simple NFS server using GoJournal’s specs, which confirms that they are helpful for application verification: a significant part of the proof doesn’t have to consider concurrency and crashes.
more »
« less
Verifying the DaisyNFS concurrent and crash-safe file system with sequential reasoning
This paper develops a new approach to verifying a performant file system that isolates crash safety and concurrency reasoning to a transaction system that gives atomic access to the disk, so that the rest of the file system can be verified with sequential reasoning. We demonstrate this approach in DaisyNFS, a Network File System (NFS) server written in Go that runs on top of a disk. DaisyNFS uses GoTxn, a new verified, concurrent transaction system that extends GoJournal with two-phase locking and an allocator. The transaction system's specification formalizes under what conditions transactions can be verified with only sequential reasoning, and comes with a mechanized proof in Coq that connects the specification to the implementation. As evidence that proofs enjoy sequential reasoning, DaisyNFS uses Dafny, a sequential verification language, to implement and verify all the NFS operations on top of GoTxn. The sequential proofs helped achieve a number of good properties in DaisyNFS: easy incremental development (for example, adding support for large files), a relatively short proof (only 2x as many lines of proof as code), and a performant implementation (at least 60% the throughput of the Linux NFS server exporting ext4 across a variety of benchmarks).
more »
« less
- PAR ID:
- 10386621
- Date Published:
- Journal Name:
- Proceedings of the 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2022)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper introduces Perennial, a framework for verifying concurrent, crash-safe systems. Perennial extends the Iris concurrency framework with three techniques to enable crash-safety reasoning: recovery leases, recovery helping, and versioned memory. To ease development and deployment of applications, Perennial provides Goose, a subset of Go and a translator from that subset to a model in Perennial with support for reasoning about Go threads, data structures, and file-system primitives. We implemented and verified a crash-safe, concurrent mail server using Perennial and Goose that achieves speedup on multiple cores. Both Perennial and Iris use the Coq proof assistant, and the mail server and the framework's proofs are machine checked.more » « less
-
Intel SGX promises powerful security: an arbitrary number of user-mode enclaves protected against physical attacks and privileged software adversaries. However, to achieve this, Intel extended the x86 architecture with an isolation mechanism approaching the complexity of an OS microkernel, implemented by an inscrutable mix of silicon and microcode. While hardware-based security can offer performance and features that are difficult or impossible to achieve in pure software, hardware-only solutions are difficult to update, either to patch security flaws or introduce new features. Komodo illustrates an alternative approach to attested, on-demand, user-mode, concurrent isolated execution. We decouple the core hardware mechanisms such as memory encryption, address-space isolation and attestation from the management thereof, which Komodo delegates to a privileged software monitor that in turn implements enclaves. The monitor's correctness is ensured by a machine-checkable proof of both functional correctness and high-level security properties of enclave integrity and confidentiality. We show that the approach is practical and performant with a concrete implementation of a prototype in verified assembly code on ARM TrustZone. Our ultimate goal is to achieve security equivalent to or better than SGX while enabling deployment of new enclave features independently of CPU upgrades. The Komodo specification, prototype implementation, and proofs are available at https://github.com/Microsoft/Komodo.more » « less
-
Writing certifiably correct system software is still very labor-intensive, and current programming languages are not well suited for the task. Proof assistants work best on programs written in a high-level functional style, while operating systems need low-level control over the hardware. We present DeepSEA, a language which provides support for layered specification and abstraction refinement, effect encapsulation and composition, and full equational reasoning. A single DeepSEA program is automatically compiled into a certified ``layer'' consisting of a C program (which is then compiled into assembly by CompCert), a low-level functional Coq specification, and a formal (Coq) proof that the C program satisfies the specification. Multiple layers can be composed and interleaved with manual proofs to ascribe a high-level specification to a program by stepwise refinement. We evaluate the language by using it to reimplement two existing verified programs: a SHA-256 hash function and an OS kernel page table manager. This new style of programming language design can directly support the development of correct-by-construction system software.more » « less
-
Parfait is a framework for proving that an implementation of a hardware security module (HSM) leaks nothing more than what is mandated by an application specification. Parfait proofs cover the software and the hardware of an HSM, which catches bugs above the cycle-level digital circuit abstraction, including timing side channels. Parfait's contribution is a scalable approach to proving security and non-leakage by using intermediate levels of abstraction and relating them with transitive information-preserving refinement. This enables Parfait to use different techniques to verify the implementation at different levels of abstraction, reuse existing verified components such as CompCert, and automate parts of the proof, while still providing end-to-end guarantees. We use Parfait to verify four HSMs, including an ECDSA certificate-signing HSM and a password-hashing HSM, on top of the OpenTitan Ibex and PicoRV32 processors. Parfait provides strong guarantees for these HSMs: for instance, it proves that the ECDSA-on-Ibex HSM implementation---2,300 lines of code and 13,500 lines of Verilog---leaks nothing more than what is allowed by a 40-line specification of its behavior.more » « less
An official website of the United States government

