skip to main content

Title: Direct attenuation of Arabidopsis ERECTA signalling by a pair of U-box E3 ligases

Plants sense a myriad of signals through cell-surface receptors to coordinate their development and environmental response. TheArabidopsisERECTA receptor kinase regulates diverse developmental processes via perceiving multiple EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE peptide ligands. How the activated ERECTA protein is turned over is unknown. Here we identify two closely related plant U-box ubiquitin E3 ligases, PUB30 and PUB31, as key attenuators of ERECTA signalling for two developmental processes: inflorescence/pedicel growth and stomatal development. Loss-of-functionpub30 pub31mutant plants exhibit extreme inflorescence/pedicel elongation and reduced stomatal numbers owing to excessive ERECTA protein accumulation. Ligand activation of ERECTA leads to phosphorylation of PUB30/31 via BRI1-ASSOCIATED KINASE1 (BAK1), which acts as a coreceptor kinase and a scaffold to promote PUB30/31 to associate with and ubiquitinate ERECTA for eventual degradation. Our work highlights PUB30 and PUB31 as integral components of the ERECTA regulatory circuit that ensure optimal signalling outputs, thereby defining the role for PUB proteins in developmental signalling.

more » « less
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Plants
Page Range / eLocation ID:
p. 112-127
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We describe a previously unreported macroscopic Arabidopsis organ, the cantil, named for its ‘cantilever’ function of holding the pedicel at a distance from the stem. Cantil development is strongest at the first nodes after the vegetative to reproductive inflorescence transition; cantil magnitude and frequency decrease acropetally. Cantils develop in wild-type Arabidopsis accessions (e.g. Col-0, Ws and Di-G) as a consequence of delayed flowering in short days; cantil formation is observed in long days when flowering is delayed by null mutation of the floral regulator FLOWERING LOCUS T. The receptor-like kinase ERECTA is a global positive regulator of cantil formation; therefore, cantils never form in the Arabidopsis strain Ler. ERECTA functions genetically upstream of heterotrimeric G proteins. Cantil expressivity is repressed by the specific heterotrimeric complex subunits GPA1, AGB1 and AGG3, which also play independent roles: GPA1 suppresses distal spurs at cantil termini, while AGB1 and AGG3 suppress ectopic epidermal rippling. These G protein mutant traits are recapitulated in long-day flowering gpa1-3 ft-10 plants, demonstrating that cantils, spurs and ectopic rippling occur as a function of delayed phase transition, rather than as a function of photoperiod per se. 
    more » « less
  2. Abstract

    Leaves and flowers are produced by the shoot apical meristem (SAM) at a certain distance from its center, a process that requires the hormone auxin. The amount of auxin and the pattern of its distribution in the initiation zone determine the size and spatial arrangement of organ primordia. Auxin gradients in the SAM are formed by PIN-FORMED (PIN) auxin efflux carriers whose polar localization in the plasma membrane depends on the protein kinase PINOID (PID). Previous work determined that ERECTA (ER) family genes (ERfs) control initiation of leaves. ERfs are plasma membrane receptors that enable cell-to-cell communication by sensing extracellular small proteins from the EPIDERMAL PATTERNING FACTOR/EPF-LIKE (EPF/EPFL) family. Here, we investigated whether ERfs regulate initiation of organs by altering auxin distribution or signaling in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological data suggested that ERfs do not regulate organogenesis through PINs while transcriptomics data showed that ERfs do not alter primary transcriptional responses to auxin. Our results indicated that in the absence of ERf signaling the peripheral zone cells inefficiently initiate leaves in response to auxin signals and that increased accumulation of auxin in the er erecta-like1 (erl1) erl2 SAM can partially rescue organ initiation defects. We propose that both auxin and ERfs are essential for leaf initiation and that they have common downstream targets. Genetic data also indicated that the role of PID in initiation of cotyledons and leaves cannot be attributed solely to regulation of PIN polarity and PID is likely to have other functions in addition to regulation of auxin distribution.

    more » « less
  3. Abstract

    Plants monitor seasonal cues to optimize reproductive success by tuning onset of reproduction and inflorescence architecture. TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) and their orthologs antagonistically regulate these life history traits, yet their mechanism of action, antagonism and targets remain poorly understood. Here, we show that TFL1 is recruited to thousands of loci by the bZIP transcription factor FD. We identify the master regulator of floral fate,LEAFY(LFY) as a target under dual opposite regulation by TFL1 and FT and uncover a pivotal role of FT in promoting flower fate viaLFYupregulation. We provide evidence that the antagonism between FT and TFL1 relies on competition for chromatin-bound FD at shared target loci. Direct TFL1-FD regulated target genes identify this complex as a hub for repressing both master regulators of reproductive development and endogenous signalling pathways. Our data provide mechanistic insight into how TFL1-FD sculpt inflorescence architecture, a trait important for reproductive success, plant architecture and yield.

    more » « less

    Meristem function is underpinned by numerous genes that affect hormone levels, ultimately controlling phyllotaxy, the transition to flowering and general growth properties. Class I KNOX genes are major contributors to this process, promoting cytokinin biosynthesis but repressing gibberellin production to condition a replication competent state. We identified a suppressor mutant of theKNOX1mutantbrevipedicellus(bp) that we termedflasher(fsh), which promotes stem and pedicel elongation, suppresses early senescence, and negatively affects reproductive development. Map‐based cloning and complementation tests revealed thatfshis due to an E40K change in the flavin monooxygenaseGS‐OX5, a gene encoding a glucosinolate (GSL) modifying enzyme.In vitroenzymatic assays revealed thatfshpoorly converts substrate to product, yet the levels of several GSLs are higher in the suppressor line, implicatingFSHin feedback control of GSL flux.FSHis expressed predominantly in the vasculature in patterns that do not significantly overlap those ofBP, implying a non‐cell autonomous mode of meristem control via one or more GSL metabolites. Hormone analyses revealed that cytokinin levels are low inbp, butfshrestores cytokinin levels to near normal by activating cytokinin biosynthesis genes. In addition, jasmonate levels in thefshsuppressor are significantly lower than inbp, which is likely due to elevated expression of JA inactivating genes. These observations suggest the involvement of the GSL pathway in generating one or more negative effectors of growth that influence inflorescence architecture and fecundity by altering the balance of hormonal regulators.

    more » « less
  5. In plants, coordination of cell division and differentiation is critical for tissue patterning and organ development. Directional cell signaling and cell polarity have been proposed to participate in coordination of these developmental processes. For instance, a leucine-rich repeat receptor-like kinase (LRR-RLK) named INFLORESCENCE AND ROOT APICES KINASE (IRK) functions to restrict stele area and inhibit longitudinal anticlinal divisions (LADs) in the endodermis where it is polarly localized. The LRR-RLK most closely related to IRK is PXY/TDR CORRELATED 2 (PXC2) and we find that PXC2 shows similar polarized accumulation as IRK in root cell types. To further understand how these proteins operate in directional cell-cell signaling and root development we explored PXC2 function. pxc2 roots have an increase in stele area, indicating that PXC2 also functions to restrict stele size. Additionally, compared to either single mutant, irk pxc2 roots have an enhanced phenotype with further increases in endodermal LADs and stele area indicating redundant activities of these receptors. The double mutant also exhibits abnormal root growth, suggesting broader functions of PXC2 and IRK in the root. However, PXC2 is not functionally equivalent to IRK, as endodermal misexpression of PXC2 did not fully rescue irk. We propose that PXC2 is at least partially redundant to IRK with a more predominant role for IRK in repression of endodermal LADs. Our results are consistent with the hypothesis that repression of specific endodermal cell divisions and stele area through a PXC2/IRK-mediated directional signaling pathway is required for coordinated root growth and development. 
    more » « less