Abstract Hypersonic vehicles must withstand extreme conditions during flights that exceed five times the speed of sound. These systems have the potential to facilitate rapid access to space, bolster defense capabilities, and create a new paradigm for transcontinental earth-to-earth travel. However, extreme aerothermal environments create significant challenges for vehicle materials and structures. This work addresses the critical need to develop resilient refractory alloys, composites, and ceramics. We will highlight key design principles for critical vehicle areas such as primary structures, thermal protection, and propulsion systems; the role of theory and computation; and strategies for advancing laboratory-scale materials to manufacturable flight-ready components.
more »
« less
Materials properties characterization in the most extreme environments
AbstractThere is an ever-increasing need for material systems to operate in the most extreme environments encountered in space exploration, energy production, and propulsion systems. To effectively design materials to reliably operate in extreme environments, we need an array of tools to both sustain lab-scale extreme conditions and then probe the materials properties across a variety of length and time scales. Within this article, we examine the state-of-the-art experimental systems for testing materials under extreme environments and highlight the limitations of these approaches. We focus on three areas: (1) extreme temperatures, (2) extreme mechanical testing, and (3) chemically hostile environments. Within these areas, we identify six opportunities for instrument and technique development that are poised to dramatically impact the further understanding and development of next-generation materials for extreme environments. Graphical abstract
more »
« less
- Award ID(s):
- 2047084
- PAR ID:
- 10386657
- Publisher / Repository:
- Cambridge University Press (CUP)
- Date Published:
- Journal Name:
- MRS Bulletin
- Volume:
- 47
- Issue:
- 11
- ISSN:
- 0883-7694
- Page Range / eLocation ID:
- p. 1128-1142
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Objective:Although extreme heat can impact the health of anyone, certain groups are disproportionately affected. In urban settings, cooling centers are intended to reduce heat exposure by providing air-conditioned spaces to the public. We examined the characteristics of populations living near cooling centers and how well they serve areas with high social vulnerability. Methods:We identified 1402 cooling centers in 81 US cities from publicly available sources and analyzed markers of urban heat and social vulnerability in relation to their locations. Within each city, we developed cooling center access areas, defined as the geographic area within a 0.5-mile walk from a center, and compared sociodemographic characteristics of populations living within versus outside the access areas. We analyzed results by city and geographic region to evaluate climate-relevant regional differences. Results:Access to cooling centers differed among cities, ranging from 0.01% (Atlanta, Georgia) to 63.2% (Washington, DC) of the population living within an access area. On average, cooling centers were in areas that had higher levels of social vulnerability, as measured by the number of people living in urban heat islands, annual household income below poverty, racial and ethnic minority status, low educational attainment, and high unemployment rate. However, access areas were less inclusive of adult populations aged ≥65 years than among populations aged <65 years. Conclusion:Given the large percentage of individuals without access to cooling centers and the anticipated increase in frequency and severity of extreme heat events, the current distribution of centers in the urban areas that we examined may be insufficient to protect individuals from the adverse health effects of extreme heat, particularly in the absence of additional measures to reduce risk.more » « less
-
Abstract Compositionally complex materials have demonstrated extraordinary promise for structural robustness in extreme environments. Of these, the most commonly thought of are high entropy alloys, where chemical complexity grants uncommon combinations of hardness, ductility, and thermal resilience. In contrast to these metal–metal bonded systems, the addition of ionic and covalent bonding has led to the discovery of high entropy ceramics (HECs). These materials also possess outstanding structural, thermal, and chemical robustness but with a far greater variety of functional properties which enable access to continuously controllable magnetic, electronic, and optical phenomena. In this experimentally focused perspective, we outline the potential for HECs in functional applications under extreme environments, where intrinsic stability may provide a new path toward inherently hardened device design. Current works on high entropy carbides, actinide bearing ceramics, and high entropy oxides are reviewed in the areas of radiation, high temperature, and corrosion tolerance where the role of local disorder is shown to create pathways toward self-healing and structural robustness. In this context, new strategies for creating future electronic, magnetic, and optical devices to be operated in harsh environments are outlined.more » « less
-
AbstractManaging, processing, and sharing research data and experimental context produced on modern scientific instrumentation all present challenges to the materials research community. To address these issues, two MaRDA Working Groups on FAIR Data in Materials Microscopy Metadata and Materials Laboratory Information Management Systems (LIMS) convened and generated recommended best practices regarding data handling in the materials research community. Overall, the Microscopy Metadata Group recommends (1) instruments should capture comprehensive metadata about operators, specimens/samples, instrument conditions, and data formation; and (2) microscopy data and metadata should use standardized vocabularies and community standard identifiers. The LIMS Group produced the following guides and recommendations: (1) a cost and benefit comparison when implementing LIMS; (2) summaries of prerequisite requirements, capabilities, and roles of LIMS stakeholders; and (3) a review of metadata schemas and information-storage best practices in LIMS. Together, the groups hope these recommendations will accelerate breakthrough scientific discoveries via FAIR data. Impact statementWith the deluge of data produced in today’s materials research laboratories, it is critical that researchers stay abreast of developments in modern research data management, particularly as it relates to the international effort to make data more FAIR – findable, accessible, interoperable, and reusable. Most crucially, being able to responsibly share research data is a foundational means to increase progress on the materials research problems of high importance to science and society. Operational data management and accessibility are pivotal in accelerating innovation in materials science and engineering and to address mounting challenges facing our world, but the materials research community generally lags behind its cognate disciplines in these areas. To address this issue, the Materials Research Coordination Network (MaRCN) convened two working groups comprised of experts from across the materials data landscape in order to make recommendations to the community related to improvements in materials microscopy metadata standards and the use of Laboratory Information Management Systems (LIMS) in materials research. This manuscript contains a set of recommendations from the working groups and reflects the culmination of their 18-month efforts, with the hope of promoting discussion and reflection within the broader materials research community in these areas. Graphical abstractmore » « less
-
AbstractEfforts to reach net zero targets by the second half of the century will have profound materials supply implications. The anticipated scale and speed of the energy transition in both transportation and energy storage raises the question of whether we risk running out of the essential critical materials needed to enable this transition. Early projections suggest that disruptions are likely to occur in the short term for select critical materials, but at the same time these shortages provide a powerful incentive for the market to respond in a variety of ways before supply-level stress becomes dire. In April 2023, the MRSFocus on Sustainability subcommitteesponsored a panel discussion on the role of innovation in materials science and engineering in supporting supply chains for clean energy technologies. Drawing on examples from the panel discussion, this perspective examines the myth of materials scarcity, explains the compelling need for innovation in materials in helping supply chains dynamically adapt over time, and illustrates how the Materials Research Society is facilitating engagement with industry to support materials innovation, now and in the future. Graphical Abstract HighlightsIn this commentary, we examine the myth of materials scarcity, explain the compelling need for innovation in materials in helping supply chains dynamically adapt over time, and show how the materials research community can effectively engage with industry, policymakers, and funding agencies to drive the needed innovation in critical areas. DiscussionDemand for certain materials used in clean energy technologies is forecasted to increase by multiples of current production over the next decades. This has drawn attention to supply chain risks and has created a myth that we will “run out” out of certain materials during the energy transition. The reality is that markets have multiple mechanisms to adapt over the long-term, and near-term shortages or expectations of shortages provide a powerful incentive for action. In this commentary, we highlight different ways materials innovation can help solve these issues in the near term and long term, and how the materials research community can effectively engage with industry and policymakers.more » « less
An official website of the United States government
