Abstract We present the results of an experiment investigating the generation of high-order harmonics by a femtosecond near-infrared (NIR) laser pulse in the presence of an extreme ultraviolet (XUV) field provided by a free-electron laser (FEL), a process referred to as XUV-assisted high-order harmonic generation (HHG). Our experimental findings show that the XUV field can lead to a small enhancement in the harmonic yield when the XUV and NIR pulses overlap in time, while a strong decrease of the HHG yield and a red shift of the HHG spectrum is observed when the XUV precedes the NIR pulse. The latter observations are in qualitative agreement with model calculations that consider the effect of a decreased number of neutral emitters but are at odds with the predicted effect of the correspondingly increased ionization fraction on the phase matching. Our study demonstrates the technical feasibility of XUV-assisted HHG experiments at FELs, which may provide new avenues to investigate correlation-driven electron dynamics as well as novel ways to study and control propagation effects and phase matching in HHG.
more »
« less
Breakdown of the single-collision condition for soft x-ray high harmonic generation in noble gases
High harmonic generation (HHG) in atomic gases is generally assumed to originate from photoelectrons that are not perturbed by neighboring particles. In this paper, we study theoretically and experimentally the regime where this approximation breaks down. At high laser intensities, we experimentally find that producing soft x-rays beyond this single-collision condition leads to a strong reduction of the coherent HHG response and appearance of incoherent radiation. We generalize our results to phase-matched HHG with mid-infrared drivers, and determine that aminimum pulse energyis needed to simultaneously phase match the HHG process and keep photoelectrons unperturbed by surrounding particles. Therefore, while previous research showed that HHG efficiency is independent of the driving pulse energy if other experimental parameters are scaled accordingly, we find that this rule no longer applies for high photon energies. Our study thus provides important guidelines for the laser parameters needed for the generation of high flux soft x-ray high harmonics.
more »
« less
- Award ID(s):
- 2110633
- PAR ID:
- 10386710
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optica
- Volume:
- 9
- Issue:
- 12
- ISSN:
- 2334-2536
- Format(s):
- Medium: X Size: Article No. 1448
- Size(s):
- Article No. 1448
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The breakdown of a Mott-insulator when subjected to intense laser fields is characterized by the formation of doublon-hole pairs. This breakdown is furthermore evidenced by the production of high harmonics that can be experimentally measured. Here, we present an approach for extracting the doublon-hole correlation length of a Mott insulator. The method is based on a dynamical calculation of the Mott insulator’s rate of charge production in response to an applied strong-field laser pulse. We find that coupling the Mott insulator to a metal drastically increases the correlation length, in support of our recent hypothesis [Phys. Rev. B108,144434(2023)2469-995010.1103/PhysRevB.108.144434] that coupling to a metal enhances the charge fluctuations in the insulator. We confirm our conclusions using density matrix renormalization group (DMRG) calculations. The proposed method can be applied to experimentally measured observables, such as differential reflectivity or the high harmonic generation (HHG) spectrum to extract doublon-hole correlation length.more » « less
-
High harmonic spectroscopy utilizes the extremely nonlinear optical process of high-order harmonic generation (HHG) to measure complex attosecond-scale dynamics within the emitting atom or molecule subject to a strong laser field. However, it can be difficult to compare theory and experiment, since the dynamics under investigation are often very sensitive to the laser intensity, which inevitably varies over the Gaussian profile of a typical laser beam. This discrepancy would usually be resolved by so-called macroscopic HHG simulations, but such methods almost always use a simplified model of the internal dynamics of the molecule, which is not necessarily applicable for high harmonic spectroscopy. In this Letter, we extend the existing framework of macroscopic HHG so that high-accuracyab initiocalculations can be used as the microscopic input. This new (to the best of our knowledge) approach is applied to a recent theoretical prediction involving the HHG spectra of open-shell molecules undergoing nonadiabatic dynamics. We demonstrate that the predicted features in the HHG spectrum unambiguously survive macroscopic response calculations, and furthermore they exhibit a nontrivial angular pattern in the far field.more » « less
-
Explicit formula for high-order sideband polarization by extreme tailoring of Feynman path integralsHigh-order sideband generation (HSG), as an analog of the interband processes in high-harmonic generation (HHG) in solids, is a nonperturbative nonlinear optical phenomenon in semiconductors that are simultaneously driven by a relatively weak near-infrared (NIR) laser and a sufficiently strong terahertz (THz) field. We derive an explicit formula for sideband polarization vectors in a prototypical two-band model based on the saddle-point method. Our formula connects the sideband amplitudes with the laser-field parameters, electronic structures, and nonequilibrium dephasing rates in a highly nontrivial manner. Our results indicate the possibility of extracting information on band structures and dephasing rates from high-order sideband generation experiments with simple algebraic calculations. We also expect our approach to be useful on the quantitative understanding of the interband HHG.more » « less
-
Abstract Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7 keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3μm x 1.7μm full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction.more » « less
An official website of the United States government
