skip to main content


Title: Comparing weak lensing peak counts in baryonic correction models to hydrodynamical simulations
ABSTRACT

Next-generation weak lensing (WL) surveys, such as by the Vera Rubin Observatory, the Roman Space Telescope, and the Euclid space mission, will supply vast amounts of data probing small, highly non-linear scales. Extracting information from these scales requires higher-order statistics and the controlling of related systematics such as baryonic effects. To account for baryonic effects in cosmological analyses at reduced computational cost, semi-analytic baryonic correction models (BCMs) have been proposed. Here, we study the accuracy of a particular BCM (the A20-BCM) for WL peak counts, a well-studied, simple, and effective higher-order statistic. We compare WL peak counts generated from the full hydrodynamical simulation IllustrisTNG and a baryon-corrected version of the corresponding dark matter-only simulation IllustrisTNG-Dark. We apply galaxy shape noise matching depths reached by DES, KiDS, HSC, LSST, Roman, and Euclid. We find that peak counts from the A20-BCM are (i) accurate at per cent level for peaks with S/N < 4, (ii) statistically indistinguishable from IllustrisTNG in most current and ongoing surveys, but (iii) insufficient for deep future surveys covering the largest solid angles, such as LSST and Euclid. We find that the BCM matches individual peaks accurately, but underpredicts the amplitude of the highest peaks. We conclude that the A20-BCM is a viable substitute for full hydrodynamical simulations in cosmological parameter estimation from beyond-Gaussian statistics for ongoing and future surveys with modest solid angles. For the largest surveys, the A20-BCM must be refined to provide a more accurate match, especially to the highest peaks.

 
more » « less
NSF-PAR ID:
10386752
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
519
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 573-584
Size(s):
["p. 573-584"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Ongoing and planned weak lensing (WL) surveys are becoming deep enough to contain information on angular scales down to a few arcmin. To fully extract information from these small scales, we must capture non-Gaussian features in the cosmological WL signal while accurately accounting for baryonic effects. In this work, we account for baryonic physics via a baryonic correction model that modifies the matter distribution in dark matter-only N-body simulations, mimicking the effects of galaxy formation and feedback. We implement this model in a large suite of ray-tracing simulations, spanning a grid of cosmological models in Ωm−σ8 space. We then develop a convolutional neural network (CNN) architecture to learn and constrain cosmological and baryonic parameters simultaneously from the simulated WL convergence maps. We find that in a Hyper-Suprime Cam-like survey, our CNN achieves a 1.7× tighter constraint in Ωm−σ8 space (1σ area) than the power spectrum and 2.1× tighter than the peak counts, showing that the CNN can efficiently extract non-Gaussian cosmological information even while marginalizing over baryonic effects. When we combine our CNN with the power spectrum, the baryonic effects degrade the constraint in Ωm−σ8 space by a factor of 2.4, compared to the much worse degradation by a factor of 4.7 or 3.7 from either method alone.

     
    more » « less
  2. ABSTRACT

    Cosmological inference with large galaxy surveys requires theoretical models that combine precise predictions for large-scale structure with robust and flexible galaxy formation modelling throughout a sufficiently large cosmic volume. Here, we introduce the millenniumTNG (MTNG) project which combines the hydrodynamical galaxy formation model of illustrisTNG with the large volume of the millennium simulation. Our largest hydrodynamic simulation, covering $(500 \, h^{-1}{\rm Mpc})^3 \simeq (740\, {\rm Mpc})^3$, is complemented by a suite of dark-matter-only simulations with up to 43203 dark matter particles (a mass resolution of $1.32\times 10^8 \, h^{-1}{\rm M}_\odot$) using the fixed-and-paired technique to reduce large-scale cosmic variance. The hydro simulation adds 43203 gas cells, achieving a baryonic mass resolution of $2\times 10^7 \, h^{-1}{\rm M}_\odot$. High time-resolution merger trees and direct light-cone outputs facilitate the construction of a new generation of semi-analytic galaxy formation models that can be calibrated against both the hydro simulation and observation, and then applied to even larger volumes – MTNG includes a flagship simulation with 1.1 trillion dark matter particles and massive neutrinos in a volume of $(3000\, {\rm Mpc})^3$. In this introductory analysis we carry out convergence tests on basic measures of non-linear clustering such as the matter power spectrum, the halo mass function and halo clustering, and we compare simulation predictions to those from current cosmological emulators. We also use our simulations to study matter and halo statistics, such as halo bias and clustering at the baryonic acoustic oscillation scale. Finally we measure the impact of baryonic physics on the matter and halo distributions.

     
    more » « less
  3. ABSTRACT We constrain the matter density Ωm and the amplitude of density fluctuations σ8 within the ΛCDM cosmological model with shear peak statistics and angular convergence power spectra using mass maps constructed from the first three years of data of the Dark Energy Survey (DES Y3). We use tomographic shear peak statistics, including cross-peaks: peak counts calculated on maps created by taking a harmonic space product of the convergence of two tomographic redshift bins. Our analysis follows a forward-modelling scheme to create a likelihood of these statistics using N-body simulations, using a Gaussian process emulator. We take into account the uncertainty from the remaining, largely unconstrained ΛCDM parameters (Ωb, ns, and h). We include the following lensing systematics: multiplicative shear bias, photometric redshift uncertainty, and galaxy intrinsic alignment. Stringent scale cuts are applied to avoid biases from unmodelled baryonic physics. We find that the additional non-Gaussian information leads to a tightening of the constraints on the structure growth parameter yielding $S_8~\equiv ~\sigma _8\sqrt{\Omega _{\mathrm{m}}/0.3}~=~0.797_{-0.013}^{+0.015}$ (68 per cent confidence limits), with a precision of 1.8 per cent, an improvement of 38 per cent compared to the angular power spectra only case. The results obtained with the angular power spectra and peak counts are found to be in agreement with each other and no significant difference in S8 is recorded. We find a mild tension of $1.5 \, \sigma$ between our study and the results from Planck 2018, with our analysis yielding a lower S8. Furthermore, we observe that the combination of angular power spectra and tomographic peak counts breaks the degeneracy between galaxy intrinsic alignment AIA and S8, improving cosmological constraints. We run a suite of tests concluding that our results are robust and consistent with the results from other studies using DES Y3 data. 
    more » « less
  4. Abstract Uncertain feedback processes in galaxies affect the distribution of matter, currently limiting the power of weak lensing surveys. If we can identify cosmological statistics that are robust against these uncertainties, or constrain these effects by other means, then we can enhance the power of current and upcoming observations from weak lensing surveys such as DES, Euclid, the Rubin Observatory, and the Roman Space Telescope. In this work, we investigate the potential of the electron density auto-power spectrum as a robust probe of cosmology and baryonic feedback. We use a suite of (magneto-)hydrodynamic simulations from the CAMELS project and perform an idealized analysis to forecast statistical uncertainties on a limited set of cosmological and physically-motivated astrophysical parameters. We find that the electron number density auto-correlation, measurable through either kinematic Sunyaev-Zel'dovich observations or through Fast Radio Burst dispersion measures, provides tight constraints on Ω m and the mean baryon fraction in intermediate-mass halos, f̅ bar . By obtaining an empirical measure for the associated systematic uncertainties, we find these constraints to be largely robust to differences in baryonic feedback models implemented in hydrodynamic simulations. We further discuss the main caveats associated with our analysis, and point out possible directions for future work. 
    more » « less
  5. ABSTRACT

    We study weak gravitational lensing convergence maps produced from the MillenniumTNG simulations by direct projection of the mass distribution on the past backwards lightcone of a fiducial observer. We explore the lensing maps over a large dynamic range in simulation mass and angular resolution, allowing us to establish a clear assessment of numerical convergence. By comparing full physics hydrodynamical simulations with corresponding dark-matter-only runs, we quantify the impact of baryonic physics on the most important weak lensing statistics. Likewise, we predict the impact of massive neutrinos reliably far into the non-linear regime. We also demonstrate that the ‘fixed & paired’ variance suppression technique increases the statistical robustness of the simulation predictions on large scales not only for time slices but also for continuously output lightcone data. We find that both baryonic and neutrino effects substantially impact weak lensing shear measurements, with the latter dominating over the former on large angular scales. Thus, both effects must explicitly be included to obtain sufficiently accurate predictions for stage IV lensing surveys. Reassuringly, our results agree accurately with other simulation results where available, supporting the promise of simulation modelling for precision cosmology far into the non-linear regime.

     
    more » « less