skip to main content


Title: Bacterial Recruitment to Carnivorous Pitcher Plant Communities: Identifying Sources Influencing Plant Microbiome Composition and Function
Processes influencing recruitment of diverse bacteria to plant microbiomes remain poorly understood. In the carnivorous pitcher plant Sarracenia purpurea model system, individual pitchers open to collect rainwater, invertebrates and a diverse microbial community, and this detrital food web is sustained by captured insect prey. This study examined how potential sources of bacteria affect the development of the bacterial community within pitchers, how the host plant tissue affects community development and how established vs. assembling communities differ. In a controlled greenhouse experiment, seven replicate pitchers were allocated to five treatments to exclude specific bacterial sources or host tissue: milliQ water only, milliQ + insect prey, rainwater + prey, established communities + prey, artificial pitchers with milliQ + prey. Community composition and functions were examined over 8–40 weeks using bacterial gene sequencing and functional predictions, measurements of cell abundance, hydrolytic enzyme activity and nutrient transformations. Distinct community composition and functional differences between artificial and real pitchers confirm an important influence of host plant tissue on community development, but also suggest this could be partially related to host nutrient uptake. Significant recruitment of bacteria to pitchers from air was evident from many taxa common to all treatments, overlap in composition between milliQ, milliQ + prey, and rainwater + prey treatments, and few taxa unique to milliQ only pitchers. Community functions measured as hydrolytic enzyme (chitinase, protease) activity suggested a strong influence of insect prey additions and were linked to rapid transformation of insect nutrients into dissolved and inorganic sources. Bacterial taxa found in 6 of 7 replicate pitchers within treatments, the “core microbiome” showed tighter successional trajectories over 8 weeks than all taxa. Established pitcher community composition was more stable over 8 weeks, suggesting a diversity-stability relationship and effect of microinvertebrates on bacteria. This study broadly demonstrates that bacterial composition in host pitcher plants is related to both stochastic and specific bacterial recruitment and host plants influence microbial selection and support microbiomes through capture of insect prey.  more » « less
Award ID(s):
2025337
NSF-PAR ID:
10386942
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
13
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding microbial roles in ecosystem function requires integrating microscopic processes into food webs. The carnivorous pitcher plant,Sarracenia purpurea, offers a tractable study system where diverse food webs of macroinvertebrates and microbes facilitate digestion of captured insect prey, releasing nutrients supporting the food web and host plant. However, how interactions between these macroinvertebrate and microbial communities contribute to ecosystem functions remains unclear. We examined the role of the pitcher plant mosquito,Wyeomyia smithii, in top‐down control of the composition and function of pitcher plant microbial communities. Mosquito larval abundance was enriched or depleted across a natural population ofS. purpureapitchers over a 74‐day field experiment. Bacterial community composition and microbial community function were characterized by 16S rRNA amplicon sequencing and profiling of carbon substrate use, bulk metabolic rate, hydrolytic enzyme activity, and macronutrient pools. Bacterial communities changed from pitcher opening to maturation, but larvae exerted minor effects on high‐level taxonomic composition. Higher larval abundance was associated with lower diversity communities with distinct functions and elevated nitrogen availability. Treatment‐independent clustering also supported roles for larvae in curating pitcher microbial communities through shifts in community diversity and function. These results demonstrate top‐down control of microbial functions in an aquatic microecosystem.

     
    more » « less
  2. Summary

    Plant‐associated microbial communities can profoundly affect plant health and success, and research is still uncovering factors driving the assembly of these communities. Here, we examine how geography versus host species affects microbial community structure and differential abundances of individual taxa. We use metabarcoding to characterize the bacteria and eukaryotes associated with five, often co‐occurring species ofSarraceniapitcher plants (Sarraceniaceae) and three natural hybrids along the longitudinal gradient of the U.S. Gulf Coast, as well as samples fromS.purpureain Massachusetts. To tease apart the effects of geography versus host species, we focus first on sites with co‐occurring species and then on species located across different sites. Our analyses show that bacterial and eukaryotic community structures are clearly and consistently influenced by host species identity, with geographic factors also playing a role. Naturally occurring hybrids appear to also host unique communities, which are in some ways intermediate between their parent species. We see significant effects of geography (site and longitude), but these generally explain less of the variation among pitcher communities. Overall, inSarraceniapitchers, host plant phenotype significantly affects the pitcher microbiomes and other associated organisms.

     
    more » « less
  3. The Albany pitcher plant, Cephalotus follicularis , has evolved cup-shaped leaves and a carnivorous habit completely independently from other lineages of pitcher plants. It is the only species in the family Cephalotaceae and is restricted to a small region of Western Australia. Here, we used metabarcoding to characterize the bacterial and eukaryotic communities living in C. follicularis pitchers at two different sites. Bacterial and eukaryotic communities were correlated in both richness and composition; however, the factors associated with richness were not the same across bacteria and eukaryotes, with bacterial richness differing with fluid color, and eukaryotic richness differing with the concentration of DNA extracted from the fluid, a measure roughly related to biomass. For turnover in composition, the variation in both bacterial and eukaryotic communities primarily differed with fluid acidity, fluid color, and sampling site. We compared C. follicularis -associated community diversity with that of Australian Nepenthes mirabilis , as well as a global comparison of Southeast Asian Nepenthes and North American Sarracenia . Our results showed similarity in richness with communities from other pitcher plants, and specific bacterial taxa shared among all three independent lineages of pitcher plants. Overall, we saw convergence in richness and particular clades colonizing pitcher plants around the world, suggesting that these highly specialized habitats select for certain numbers and types of inhabitants. 
    more » « less
  4. Abstract

    Insights into symbiosis between eukaryotic hosts and their microbiomes have shifted paradigms on what determines host fitness, ecology, and behavior. Questions remain regarding the roles of host versus environment in shaping microbiomes, and how microbiome composition affects host fitness. Using a model system in ecology, phytoplankton, we tested whether microbiomes are host-specific, confer fitness benefits that are host-specific, and remain conserved in time in their composition and fitness effects. We used an experimental approach in which hosts were cleaned of bacteria and then exposed to bacterial communities from natural environments to permit recruitment of microbiomes. We found that phytoplankton microbiomes consisted of a subset of taxa recruited from these natural environments. Microbiome recruitment was host-specific, with host species explaining more variation in microbiome composition than environment. While microbiome composition shifted and then stabilized over time, host specificity remained for dozens of generations. Microbiomes increased host fitness, but these fitness effects were host-specific for only two of the five species. The shifts in microbiome composition over time amplified fitness benefits to the hosts. Overall, this work solidifies the importance of host factors in shaping microbiomes and elucidates the temporal dynamics of microbiome compositional and fitness effects.

     
    more » « less
  5. Airborne bacteria are an influential component of the Earth’s microbiomes, but their community structure and biogeographic distribution patterns have yet to be understood. We analyzed the bacterial communities of 370 air particulate samples collected from 63 sites around the world and constructed an airborne bacterial reference catalog with more than 27 million nonredundant 16S ribosomal RNA (rRNA) gene sequences. We present their biogeographic pattern and decipher the interlacing of the microbiome co-occurrence network with surface environments of the Earth. While the total abundance of global airborne bacteria in the troposphere (1.72 × 10 24 cells) is 1 to 3 orders of magnitude lower than that of other habitats, the number of bacterial taxa (i.e., richness) in the atmosphere (4.71 × 10 8 to 3.08 × 10 9 ) is comparable to that in the hydrosphere, and its maximum occurs in midlatitude regions, as is also observed in other ecosystems. The airborne bacterial community harbors a unique set of dominant taxa (24 species); however, its structure appears to be more easily perturbed, due to the more prominent role of stochastic processes in shaping community assembly. This is corroborated by the major contribution of surface microbiomes to airborne bacteria (averaging 46.3%), while atmospheric conditions such as meteorological factors and air quality also play a role. Particularly in urban areas, human impacts weaken the relative importance of plant sources of airborne bacteria and elevate the occurrence of potential pathogens from anthropogenic sources. These findings serve as a key reference for predicting planetary microbiome responses and the health impacts of inhalable microbiomes with future changes in the environment. 
    more » « less