ABSTRACT Cyanobacteria are prokaryotes capable of oxygenic photosynthesis, and frequently, nitrogen fixation as well. As a result, they contribute substantially to global primary production and nitrogen cycles. Furthermore, the multicellular filamentous cyanobacteria in taxonomic subsections IV and V are developmentally complex, exhibiting an array of differentiated cell types and filaments, including motile hormogonia, making them valuable model organisms for studying development. To investigate the role of sigma factors in the gene regulatory network (GRN) controlling hormogonium development, a combination of genetic, immunological, and time-resolved transcriptomic analyses were conducted in the model filamentous cyanobacterium Nostoc punctiforme , which, unlike other common model cyanobacteria, retains the developmental complexity of field isolates. The results support a model where the hormogonium GRN is driven by a hierarchal sigma factor cascade, with sigJ activating the expression of both sigC and sigF, as well as a substantial portion of additional hormogonium-specific genes, including those driving changes to cellular architecture. In turn, sigC regulates smaller subsets of genes for several processes, plays a dominant role in promoting reductive cell division, and may also both positively and negatively regulate sigJ to reinforce the developmental program and coordinate the timing of gene expression, respectively. In contrast, the sigF regulon is extremely limited. Among genes with characterized roles in hormogonium development, only pilA shows stringent sigF dependence. For sigJ -dependent genes, a putative consensus promoter was also identified, consisting primarily of a highly conserved extended −10 region, here designated a J-Box, which is widely distributed among diverse members of the cyanobacterial lineage. IMPORTANCE Cyanobacteria are integral to global carbon and nitrogen cycles, and their metabolic capacity coupled with their ease of genetic manipulation make them attractive platforms for applications such as biomaterial and biofertilizer production. Achieving these goals will likely require a detailed understanding and precise rewiring of these organisms’ GRNs. The complex phenotypic plasticity of filamentous cyanobacteria has also made them valuable models of prokaryotic development. However, current research has been limited by focusing primarily on a handful of model strains which fail to reflect the phenotypes of field counterparts, potentially limiting biotechnological advances and a more comprehensive understanding of developmental complexity. Here, using Nostoc punctiforme , a model filamentous cyanobacterium that retains the developmental range of wild isolates, we define previously unknown definitive roles for a trio of sigma factors during hormogonium development. These findings substantially advance our understanding of cyanobacterial development and gene regulation and could be leveraged for future applications.
more »
« less
Nostoc Talks Back: Temporal Patterns of Differential Gene Expression During Establishment of Anthoceros-Nostoc Symbiosis
Endosymbiotic associations between hornworts and nitrogen-fixing cyanobacteria form when the plant is limited for combined nitrogen (N). We generated RNA-seq data to examine temporal gene expression patterns during the culturing of N-starved Anthoceros punctatus in the absence and the presence of symbiotic cyanobacterium Nostoc punctiforme. In symbiont-free A. punctatus gametophytes, N starvation caused downregulation of chlorophyll content and chlorophyll fluorescence characteristics as well as transcription of photosynthesis-related genes. This downregulation was reversed in A. punctatus cocultured with N. punctiforme, corresponding to the provision by the symbiont of N 2 -derived NH 4 + , which commenced within 5 days of coculture and reached a maximum by 14 days. We also observed transient increases in transcription of ammonium and nitrate transporters in a N. punctiforme–dependent manner as well as that of a SWEET transporter that was initially independent of N 2 -derived NH 4 + . The temporal patterns of differential gene expression indicated that N. punctiforme transmits signals that impact gene expression to A. punctatus both prior to and after its provision of fixed N. This study is the first illustrating the temporal patterns of gene expression during establishment of an endosymbiotic nitrogen-fixing association in this monophyletic evolutionary lineage of land plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
more »
« less
- Award ID(s):
- 1831428
- PAR ID:
- 10387040
- Date Published:
- Journal Name:
- Molecular Plant-Microbe Interactions®
- Volume:
- 35
- Issue:
- 10
- ISSN:
- 0894-0282
- Page Range / eLocation ID:
- 917 to 932
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Legumes acquire fixed nitrogen (N) from the soil and through endosymbiotic association with diazotrophic bacteria. However, establishing and maintaining N2-fixing nodules are expensive for the host plant, relative to taking up N from the soil. Therefore, plants suppress symbiosis when N is plentiful and enhance symbiosis when N is sparse. Here, we show that the nitrate transporter MtNRT2.1 is required for optimal nodule establishment in Medicago truncatula under low-nitrate conditions and the repression of nodulation under high-nitrate conditions. The NIN-like protein (NLP) MtNLP1 is required for MtNRT2.1 expression and regulation of nitrate uptake/transport under low- and high-nitrate conditions. Under low nitrate, the gene encoding the C-terminally encoded peptide (CEP) MtCEP1 was more highly expressed, and the exogenous application of MtCEP1 systemically promoted MtNRT2.1 expression in a compact root architecture 2 (MtCRA2)-dependent manner. The enhancement of nodulation by MtCEP1 and nitrate uptake were both impaired in the Mtnrt2.1 mutant under low nitrate. Our study demonstrates that nitrate uptake by MtNRT2.1 differentially affects nodulation at low- and high-nitrate conditions through the actions of MtCEP1 and MtNLP1.more » « less
-
de Meaux, Juliette (Ed.)Abstract Genetic redundancy refers to a situation where an individual with a loss-of-function mutation in one gene (single mutant) does not show an apparent phenotype until one or more paralogs are also knocked out (double/higher-order mutant). Previous studies have identified some characteristics common among redundant gene pairs, but a predictive model of genetic redundancy incorporating a wide variety of features derived from accumulating omics and mutant phenotype data is yet to be established. In addition, the relative importance of these features for genetic redundancy remains largely unclear. Here, we establish machine learning models for predicting whether a gene pair is likely redundant or not in the model plant Arabidopsis thaliana based on six feature categories: functional annotations, evolutionary conservation including duplication patterns and mechanisms, epigenetic marks, protein properties including post-translational modifications, gene expression, and gene network properties. The definition of redundancy, data transformations, feature subsets, and machine learning algorithms used significantly affected model performance based on hold-out, testing phenotype data. Among the most important features in predicting gene pairs as redundant were having a paralog(s) from recent duplication events, annotation as a transcription factor, downregulation during stress conditions, and having similar expression patterns under stress conditions. We also explored the potential reasons underlying mispredictions and limitations of our studies. This genetic redundancy model sheds light on characteristics that may contribute to long-term maintenance of paralogs, and will ultimately allow for more targeted generation of functionally informative double mutants, advancing functional genomic studies.more » « less
-
ABSTRACT Filamentous, heterocyst-forming cyanobacteria belonging to taxonomic subsections IV and V are developmentally complex multicellular organisms capable of differentiating an array of cell and filament types, including motile hormogonia. Hormogonia exhibit gliding motility that facilitates dispersal, phototaxis, and the establishment of nitrogen-fixing symbioses. The gene regulatory network (GRN) governing hormogonium development involves a hierarchical sigma factor cascade, but the factors governing the activation of this cascade are currently undefined. Here, using a forward genetic approach, we identified hrmK , a gene encoding a putative hybrid histidine kinase that functions upstream of the sigma factor cascade. The deletion of hrmK produced nonmotile filaments that failed to display hormogonium morphology or accumulate hormogonium-specific proteins or polysaccharide. Targeted transcriptional analyses using reverse transcription-quantitative PCR (RT-qPCR) demonstrated that hormogonium-specific genes both within and outside the sigma factor cascade are drastically downregulated in the absence of hrmK and that hrmK may be subject to indirect, positive autoregulation via sigJ and sigC . Orthologs of HrmK are ubiquitous among, and exclusive to, heterocyst-forming cyanobacteria. Collectively, these results indicate that hrmK functions upstream of the sigma factor cascade to initiate hormogonium development, likely by modulating the phosphorylation state of an unknown protein that may serve as the master regulator of hormogonium development in heterocyst-forming cyanobacteria. IMPORTANCE Filamentous cyanobacteria are morphologically complex, with several representative species amenable to routine genetic manipulation, making them excellent model organisms for the study of development. Furthermore, two of the developmental alternatives, nitrogen-fixing heterocysts and motile hormogonia, are essential to establish nitrogen-fixing symbioses with plant partners. These symbioses are integral to global nitrogen cycles and could be artificially recreated with crop plants to serve as biofertilizers, but to achieve this goal, detailed understanding and manipulation of the hormogonium and heterocyst gene regulatory networks may be necessary. Here, using the model organism Nostoc punctiforme , we identify a previously uncharacterized hybrid histidine kinase that is confined to heterocyst-forming cyanobacteria as the earliest known participant in hormogonium development.more » « less
-
Kothe, Erika (Ed.)Decades of research on marine N2fixation focused onTrichodesmium, which are generally free-living cyanobacteria, but in recent years the endosymbiotic cyanobacteriumCandidatusAtelocyanobacterium thalassa (UCYN-A) has received increasing attention. However, few studies have shed light on the influence of the host versus the habitat on UCYN-A N2fixation and overall metabolism. Here we compared transcriptomes from natural populations of UCYN-A from oligotrophic open-ocean versus nutrient-rich coastal waters, using a microarray that targets the full genomes of UCYN-A1 and UCYN-A2 and known genes for UCYN-A3. We found that UCYN-A2, usually regarded as adapted to coastal environments, was transcriptionally very active in the open ocean and appeared to be less impacted by habitat change than UCYN-A1. Moreover, for genes with 24 h periodic expression we observed strong but inverse correlations among UCYN-A1, A2, and A3 to oxygen and chlorophyll, which suggests distinct host-symbiont relationships. Across habitats and sublineages, genes for N2fixation and energy production had high transcript levels, and, intriguingly, were among the minority of genes that kept the same schedule of diel expression. This might indicate different regulatory mechanisms for genes that are critical to the symbiosis for the exchange of nitrogen for carbon from the host. Our results underscore the importance of N2fixation in UCYN-A symbioses across habitats, with consequences for community interactions and global biogeochemical cycles.more » « less
An official website of the United States government

