skip to main content

Title: A low-mass companion desert among intermediate-mass visual binaries: The scaled-up counterpart to the brown dwarf desert

We present a high-contrast imaging survey of intermediate-mass (1.75–4.5 M⊙) stars to search the most extreme stellar binaries, i.e. for the lowest mass stellar companions. Using adaptive optics at the Lick and Gemini observatories, we observed 169 stars and detected 24 candidates companions, 16 of which are newly discovered, and all but three are likely or confirmed physical companions. Despite obtaining sensitivity down to the substellar limit for 75 per cent of our sample, we do not detect any companion below 0.3 M⊙, strongly suggesting that the distribution of stellar companions is truncated at a mass ratio of qmin ≳ 0.075. Combining our results with known brown dwarf companions, we identify a low-mass companion desert to intermediate-mass stars in the range 0.02 ≲ q ≲ 0.05, which quantitatively matches the known brown dwarf desert among solar-type stars. We conclude that the formation mechanism for multiple systems operates in a largely scale-invariant manner and precludes the formation of extremely uneven systems, likely because the components of a protobinary accrete most of their mass after the initial cloud fragmentation. Similarly, the mechanism to form ‘planetary’ (q ≲ 0.02) companions likely scales linearly with stellar mass, probably as a result of the correlation between the masses more » of stars and their protoplanetary discs. Finally, we predict the existence of a sizable population of brown dwarf companions to low-mass stars and of a rising population of planetary-mass objects towards ${\approx}1\,M_\mathrm{Jup}$ around solar-type stars. Improvements on current instrumentation will test these predictions.

« less
; ; ; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 778-798
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations – reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to stripmore »off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution.« less

    At the lowest masses, the distinction between brown dwarfs and giant exoplanets is often blurred and literature classifications rarely reflect the deuterium burning boundary. Atmospheric characterization may reveal the extent to which planetary formation pathways contribute to the population of very low mass brown dwarfs, by revealing whether their abundance distributions differ from those of the local field population or, in the case of companions, their primary stars. The T8 dwarf Ross 458c is a possible planetary-mass companion to a pair of M dwarfs, and previous work suggests that it is cloudy. We here present the results of the retrieval analysis of Ross 458c, using archival spectroscopic data in the 1.0–2.4 µm range. We test a cloud-free model as well as a variety of cloudy models and find that the atmosphere of Ross 458c is best described by a cloudy model (strongly preferred). The CH4/H2O is higher than expected at $1.97^{+0.13}_{-0.14}$. This value is challenging to understand in terms of equilibrium chemistry and plausible carbon-to-oxygen (C/O) ratios. Comparisons to thermochemical grid models suggest a C/O of ≈1.35, if CH4 and H2O are quenched at 2000 K, requiring vigorous mixing. We find a [C/H] ratio of +0.18, which matches the metallicity of the primarymore »system, suggesting that oxygen is missing from the atmosphere. Even with extreme mixing, the implied C/O is well beyond the typical stellar regime, suggesting either a non-stellar formation pathway or the sequestration of substantial quantities of oxygen via hitherto unmodelled chemistry or condensation processes.

    « less
  3. Abstract

    Accretion signatures from bound brown dwarf and protoplanetary companions provide evidence for ongoing planet formation, and accreting substellar objects have enabled new avenues to study the astrophysical mechanisms controlling the formation and accretion processes. Delorme 1 (AB)b, a ∼30–45 Myr circumbinary planetary-mass companion, was recently discovered to exhibit strong Hαemission. This suggests ongoing accretion from a circumplanetary disk, somewhat surprising given canonical gas disk dispersal timescales of 5–10 Myr. Here, we present the first NIR detection of accretion from the companion in Paβ, Paγ, and Brγemission lines from SOAR/TripleSpec 4.1, confirming and further informing its accreting nature. The companion shows strong line emission, withLline≈ 1–6 × 10−8Lacross lines and epochs, while the binary host system shows no NIR hydrogen line emission (Lline< 0.32–11 × 10−7L). Observed NIR hydrogen line ratios are more consistent with a planetary accretion shock than with local line excitation models commonly used to interpret stellar magnetospheric accretion. Using planetary accretion shock models, we derive mass accretion rate estimates ofṀpla3–4 × 10−8MJyr−1, somewhat higher than expected under the standard star formation paradigm. Delorme 1 (AB)b’s high accretion rate is perhaps more consistent with formation via disk fragmentation. Delorme 1 (AB)b is themore »first protoplanet candidate with clear (signal-to-noise ratio ∼5) NIR hydrogen line emission.

    « less
  4. Abstract

    Stellar mass is a fundamental parameter that is key to our understanding of stellar formation and evolution, as well as the characterization of nearby exoplanet companions. Historically, stellar masses have been derived from long-term observations of visual or spectroscopic binary star systems. While advances in high-resolution imaging have enabled observations of systems with shorter orbital periods, measurements of stellar masses remain challenging, and relatively few have been precisely measured. We present a new statistical approach to measuring masses for populations of stars. Using Gaia astrometry, we analyze the relative orbital motion of >3800 wide binary systems comprising low-mass stars to establish a mass–magnitude relation in the GaiaGRPband spanning the absolute magnitude range 14.5 >MGRP> 4.0, corresponding to a mass range of 0.08MM≲ 1.0M. This relation is directly applicable to >30 million stars in the Gaia catalog. Based on comparison to existing mass–magnitude relations calibrated forKsmagnitudes from the Two Micron All Sky Survey, we estimate that the internal precision of our mass estimates is ∼10%. We use this relation to estimate masses for a volume-limited sample of ∼18,200 stars within 50 pc of the Sun and the present-day field mass function for stars withM≲ 1.0M, which wemore »find peaks at 0.16M. We investigate a volume-limited sample of wide binary systems with early-K dwarf primaries, complete for binary mass ratiosq> 0.2, and measure the distribution ofqat separations >100 au. We find that our distribution ofqis not uniform, rather decreasing towardq= 1.0.

    « less
  5. Context. About a third of the hot subdwarfs of spectral type B (sdBs), which are mostly core-helium-burning objects on the extreme horizontal branch, are found in close binaries with cool, low-mass stellar, substellar, or white dwarf companions. They can show light variations due to different phenomena. Aims. Many hot subdwarfs now have space-based light curves with a high signal-to-noise ratio available. We used light curves from the Transiting Exoplanet Survey Satellite and the K2 space mission to look for more sdB binaries. Their light curves can be used to study the hot subdwarf primaries and their companions, and obtained orbital, atmospheric, and absolute parameters for those systems, when combined with other analysis methods. Methods. By classifying the light variations and combining these with the fit of the spectral energy distribution, the distance derived by the parallaxes obtained by Gaia , and the atmospheric parameters, mainly from the literature, we could derive the nature of the primaries and secondaries in 122 (75%) of the known sdB binaries and 82 newly found reflection effect systems. We derived absolute masses, radii, and luminosities for a total of 39 hot subdwarfs with cool, low-mass companions, as well 29 known and newly found sdBs withmore »white dwarf companions. Results. The mass distribution of hot subdwarfs with cool, low-mass stellar and substellar companions, differs from those with white dwarf companions, implying they come from different populations. By comparing the period and minimum companion mass distributions, we find that the reflection effect systems all have M dwarf or brown dwarf companions, and that there seem to be several different populations of hot subdwarfs with white dwarf binaries – one with white dwarf minimum masses around 0.4  M ⊙ , one with longer periods and minimum companion masses up to 0.6  M ⊙ , and at the shortest period, another with white dwarf minimum masses around 0.8  M ⊙ . We also derive the first orbital period distribution for hot subdwarfs with cool, low-mass stellar or substellar systems selected from light variations instead of radial velocity variations. It shows a narrower period distribution, from 1.5 h to 35 h, compared to the distribution of hot subdwarfs with white dwarfs, which ranges from 1 h to 30 days. These period distributions can be used to constrain the previous common-envelope phase.« less