Abstract Interactions between vegetation and sediment in post‐fire landscapes play a critical role in sediment connectivity. Prior research has focused on the effects of vegetation removal from hillslopes, but little attention has been paid to the effects of coarse woody debris (CWD) added to the forest floor following fires. We investigate the impacts of CWD on hillslope sediment storage in post‐fire environments. First, we present a new conceptual model, identifying “active” storage scenarios where sediment is trapped upslope of fire‐produced debris such as logs, and additional “passive” storage scenarios including the reduced effectiveness of tree‐throw due to burnt roots and snapped stems. Second, we use tilt table experiments to test controls on sediment storage capacity. Physical modeling suggests storage varies nonlinearly with log orientation and hillslope gradient, and the maximum storage capacity of log barriers in systems with high sediment fluxes likely exceeds estimates that assume simple sediment pile geometries. Last, we calculate hillslope sediment storage capacity in a burned catchment in southwest Montana by combining high‐resolution topographic data and digitization of over 5000 downed logs from aerial imagery. We estimate that from 3500–14 000 m3of sediment was potentially stored upslope of logs. These estimates assume that all downed logs store sediment, a process that is likely temporally dynamic as storage capacity evolves with CWD decay. Our results highlight the role that CWD plays in limiting rapid sediment movement in recently burned systems. Using a range of potential soil production rates (50–100 mm/ky), CWD would buffer the downslope transport of ~35–280 years of soil produced across the landscape, indicating that fire‐produced CWD may serve as an important source of sediment disconnectivity in catchments. These results suggest that disturbance events have previously unaccounted‐for mechanisms of increasing hillslope sediment storage that should be incorporated into models of sediment connectivity.
more »
« less
Microcystin as a biogeochemical cycle: Pools, fluxes, and fates of the cyanotoxin in inland waters
Abstract Microcystin poses a serious threat to aquatic ecosystems and human health. There is a pressing need to understand the production, movement, and storage of microcystin in lakes. We constructed a conceptual biogeochemical model for microcystin through a comprehensive literature synthesis, identifying four major pools and nine major fluxes in lakes that also connect to the terrestrial environment. This conceptual model can be used as the framework for developing ecosystem mass balances of microcystin. We propose that the concentration of microcystin in the water column is the balance between the import, sediment translocation, production and degradation, uptake, burial, and export. However, substantial unknowns remain pertaining to the magnitude and movement of microcystin. Future investigations should focus on sediment fluxes, drivers of biodegradation, and seasonal dynamics. Adopting the framework of a “microcystin cycle” improves our understanding of processes driving toxin prevalence and helps to prioritize strategies for minimizing exposure risks.
more »
« less
- Award ID(s):
- 2200391
- PAR ID:
- 10387083
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography Letters
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2378-2242
- Page Range / eLocation ID:
- p. 406-418
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT By altering hydrological and geomorphological processes at watershed scales, humans have substantially influenced the movement of sediment on Earth's surface. Despite widespread recognition of human impacts on erosion and deposition, few studies have assessed the magnitude of change in watershed‐scale sediment fluxes before and after the implementation of industrial agriculture and how agricultural development has altered the spatial distribution of sediment fluxes throughout watersheds. This study uses a modeling approach to explore changes in sediment fluxes before and after agricultural development in the upper Sangamon River Basin—an agricultural watershed in the midwestern United States. Comparison of model predictions with river hydrological and sediment data and with information on soil erosion and floodplain sedimentation shows the model accurately captures contemporary fluxes of water and sediment. To assess human impact, native land‐cover conditions are used to estimate the magnitude and spatial distribution of sediment fluxes before the landscape was transformed by farming practices. Results suggest that sediment delivery from hillslopes to streams in this low relief watershed has increased 11‐fold and the sediment load in streams has increased eight‐fold since European settlement. Floodplain sedimentation has also increased dramatically, a finding consistent with recent estimates of post‐settlement alluvium accumulation rates. The proportion of sediment exported from the basin is now slightly greater than it was in the 1800s. Overall, the model results indicate that humans have greatly enhanced the movement and storage of sediment within the upper Sangamon River basin.more » « less
-
Abstract Global change is influencing production and respiration in ecosystems across the globe. Lakes in particular are changing in response to climatic variability and cultural eutrophication, resulting in changes in ecosystem metabolism. Although the primary drivers of production and respiration such as the availability of nutrients, light, and carbon are well known, heterogeneity in hydrologic setting (for example, hydrological connectivity, morphometry, and residence) across and within regions may lead to highly variable responses to the same drivers of change, complicating our efforts to predict these responses. We explored how differences in hydrologic setting among lakes influenced spatial and inter annual variability in ecosystem metabolism, using high-frequency oxygen sensor data from 11 lakes over 8 years. Trends in mean metabolic rates of lakes generally followed gradients of nutrient and carbon concentrations, which were lowest in seepage lakes, followed by drainage lakes, and higher in bog lakes. We found that while ecosystem respiration (ER) was consistently higher in wet years in all hydrologic settings, gross primary production (GPP) only increased in tandem in drainage lakes. However, interannual rates of ER and GPP were relatively stable in drainage lakes, in contrast to seepage and bog lakes which had coefficients of variation in metabolism between 22–32%. We explored how the geospatial context of lakes, including hydrologic residence time, watershed area to lake area, and landscape position influenced the sensitivity of individual lake responses to climatic variation. We propose a conceptual framework to help steer future investigations of how hydrologic setting mediates the response of metabolism to climatic variability.more » « less
-
Lake sediment microbial communities mediate carbon diagenesis. However, microbial community composition is variable across lakes, and it is still uncertain how variation in community composition influences sediment responses to environmental change. Sediment methane (CH 4 ) production has been shown to be substantially elevated by increased lake primary productivity and organic matter supply. However, the magnitude of the response of CH 4 production varies across lakes, and recent studies suggest a role for the microbial community in mediating this response. Here, we conducted sediment incubation experiments across 22 lakes to determine whether variation in sediment microbial community composition is related to the response of sediment CH 4 production to increases in organic matter. We sampled the 22 lakes across a gradient of pH in order to investigate lakes with variable sediment microbial communities. We manipulated the incubations with additions of dried algal biomass and show that variation in the response of CH 4 production to changes in organic matter supply is significantly correlated with metrics of sediment microbial community composition. Specifically, the diversity and richness of the non-methanogen community was most predictive of sediment CH 4 responses to organic matter additions. Additionally, neither metrics of microbial abundance nor preexisting organic matter availability explained meaningful variation in the response. Thus, our results provide experimental support that differences in sediment microbial communities influences CH 4 production responses to changes in organic matter availability.more » « less
-
Abstract Dissolved Oxygen (DO) fluxes across the air‐water and sediment‐water interface (AWI and SWI) are two major processes that govern the amount of oxygen available to living organisms in aquatic ecosystems. Aquatic vegetation generates different scales of turbulence that change the flow structure and affect gas transfer mechanisms at AWI and SWI. A series of laboratory experiments with rigid cylinder arrays to mimic vegetation was conducted in a recirculating race‐track flume with a lightweight sediment bed. 2D Planar Particle Image Velocimetry was used to characterize the flow field under different submergence ratios and array densities to access the effect of vegetation‐generated turbulence on gas transfer. Gas transfer rate across AWI was determined by DO re‐aeration curves. The effective diffusion coefficient for gas transfer flux across SWI was estimated by the difference between near‐bed and near‐surface DO concentrations. When sediment begins to mobilize, near‐bed suspended sediment provides a negative buoyancy term that increases the critical Reynolds number for the surface gas transfer process according to a modified Surface Renewal model for vegetated flows. A new Reynolds number dependence model using near‐bed turbulent kinetic energy as an indicator is proposed to provide a universal prediction for the interfacial flux across SWI in flows with aquatic vegetation. This study provides critical information and useful models for future studies on water quality management and ecosystem restoration in natural water environments such as lakes, rivers, and wetlands.more » « less
An official website of the United States government
