skip to main content


Title: Brighter and More Massive Galaxies in the Vicinity of Lyα Nebulae
Abstract

It has been well established in the local universe that galaxy properties differ based on the large-scale environment in which they reside. As luminous Lyαnebulae have been shown to trace overdense environments atz∼ 2–3, comparing the properties of galaxies within Lyαnebulae systems to those in the field can provide insight into how and when locally observed trends between galaxy properties and environment emerged. Six Lyαnebulae were discovered atz∼ 2.3 in a blind search of the GOODS-S extragalactic field, a region also covered by the 3D-HST spectroscopic survey. Utilizing 3D-HST data, we identified 86 galaxies in the vicinity of these nebulae and used statistical tests to compare their physical properties to galaxies elsewhere in the field. Galaxies lying within 320 proper kpc of a Lyαnebula are roughly half a magnitude brighter than those in the field, with higher stellar masses, higher star formation rates, and larger effective radii. Even when considering the effects of sample incompleteness, our study suggests that galaxies in overdensities atz∼ 2.3 traced by Lyαnebulae are being influenced by their environment. Furthermore, Lyα-nebula-associated galaxies lie on the same main sequence of star formation as field galaxies but have a larger proportion of high-mass galaxies, consistent with the idea that galaxy evolution is accelerated in rich environments. Expanded surveys for Lyαnebulae in other deep extragalactic fields and galaxy spectroscopic follow-up with the James Webb Space Telescope (JWST) will better constrain the demographics of Lyα-nebula-associated galaxies.

 
more » « less
Award ID(s):
1813016
NSF-PAR ID:
10387088
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
941
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 180
Size(s):
["Article No. 180"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Using spatially resolved Hαemission line maps of star-forming galaxies, we study the spatial distribution of star formation over a wide range in redshift (0.5 ≲z≲ 1.7). Ourz∼ 0.5 measurements come from deep Hubble Space Telescope (HST) Wide Field Camera 3 G102 grism spectroscopy obtained as part of the CANDELS LyαEmission at Reionization Experiment. For star-forming galaxies with log(M*/M) ≥ 8.96, the mean Hαeffective radius is 1.2 ± 0.1 times larger than that of the stellar continuum, implying inside-out growth via star formation. This measurement agrees within 1σwith those measured atz∼ 1 andz∼ 1.7 from the 3D-HST and KMOS3Dsurveys, respectively, implying no redshift evolution. However, we observe redshift evolution in the stellar mass surface density within 1 kpc (Σ1kpc). Star-forming galaxies atz∼ 0.5 with a stellar mass of log(M*/M) = 9.5 have a ratio of Σ1kpcin Hαrelative to their stellar continuum that is lower by (19 ± 2)% compared toz∼ 1 galaxies. Σ1kpc,Hα1kpc,Contdecreases toward higher stellar masses. The majority of the redshift evolution in Σ1kpc,Hα1kpc,Contversus stellar mass stems from the fact that log(Σ1kpc,Hα) declines twice as much as log(Σ1kpc,Cont) fromz∼ 1 to 0.5 (at a fixed stellar mass of log(M*/M) = 9.5). By comparing our results to the TNG50 cosmological magneto-hydrodynamical simulation, we rule out dust as the driver of this evolution. Our results are consistent with inside-out quenching following in the wake of inside-out growth, the former of which drives the significant drop in Σ1kpc,Hαfromz∼ 1 toz∼ 0.5.

     
    more » « less
  2. ABSTRACT We perform an aperture-matched analysis of dust-corrected H α and UV star formation rates (SFRs) using 303 star-forming galaxies with spectroscopic redshifts 1.36 < zspec < 2.66 from the MOSFIRE Deep Evolution Field survey. By combining H α and H β emission line measurements with multiwaveband resolved Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey/3D-HST imaging, we directly compare dust-corrected H α and UV SFRs, inferred assuming a fixed attenuation curve shape and constant SFHs, within the spectroscopic aperture. Previous studies have found that H α and UV SFRs inferred with these assumptions generally agree for typical star-forming galaxies, but become increasingly discrepant for galaxies with higher SFRs (≳100 M⊙ yr−1), with H α-to-UV SFR ratios being larger for these galaxies. Our analysis shows that this trend persists even after carefully accounting for the apertures over which H α and UV-based SFRs (and the nebular and stellar continuum reddening) are derived. Furthermore, our results imply that H α SFRs may be higher in the centres of large galaxies (i.e. where there is coverage by the spectroscopic aperture) compared to their outskirts, which could be indicative of inside-out galaxy growth. Overall, we suggest that the persistent difference between nebular and stellar continuum reddening and high H α-to-UV SFR ratios at the centres of large galaxies may be indicative of a patchier distribution of dust in galaxies with high SFRs. 
    more » « less
  3. Abstract

    We investigate the effects of stellar populations and sizes on Lyαescape in 27 spectroscopically confirmed and 35 photometric Lyαemitters (LAEs) atz≈ 2.65 in seven fields of the Boötes region of the NOAO Deep Wide-Field Survey. We use deep HST/WFC3 imaging to supplement ground-based observations and infer key galaxy properties. Compared to typical star-forming galaxies (SFGs) at similar redshifts, the LAEs are less massive (M≈ 107–109M), younger (ages ≲1 Gyr), smaller (re< 1 kpc), and less dust-attenuated (E(BV) ≤ 0.26 mag) but have comparable star formation rates (SFRs ≈ 1–100Myr−1). Some of the LAEs in the sample may be very young galaxies having low nebular metallicities (Zneb≲ 0.2Z) and/or high ionization parameters (log(U)2.4). Motivated by previous studies, we examine the effects of the concentration of star formation and gravitational potential on Lyαescape by computing SFR surface density, ΣSFR, and specific SFR surface density, ΣsSFR. For a given ΣSFR, the Lyαescape fraction is higher for LAEs with lower stellar masses. The LAEs have a higher ΣsSFR, on average, compared to SFGs. Our results suggest that compact star formation in a low gravitational potential yields conditions amenable to the escape of Lyαphotons. These results have important implications for the physics of Lyαradiative transfer and for the type of galaxies that may contribute significantly to cosmic reionization.

     
    more » « less
  4. Abstract

    To understand the mechanism behind high-zLyαnebulae, we simulate the scattering of Lyαin a Hihalo about a central Lyαsource. For the first time, we consider both smooth and clumpy distributions of halo gas, as well as a range of outflow speeds, total Hicolumn densities, Hispatial concentrations, and central source galaxies (e.g., with Lyαline widths corresponding to those typical of active galactic nucleus or star-forming galaxies). We compute the spatial-frequency diffusion and the polarization of the Lyαphotons scattered by atomic hydrogen. Our scattering-only model reproduces the typical size of Lyαnebulae (∼100 kpc) at total column densitiesNH I≥ 1020cm−2and predicts a range of positive, flat, and negative polarization radial gradients. We also find two general classes of Lyαnebula morphologies: with and without bright cores. Cores are seen whenNH Iis low, i.e., when the central source is directly visible, and are associated with a polarization jump, a steep increase in the polarization radial profile just outside the halo center. Of all the parameters tested in our smooth or clumpy medium model,NH Idominates the trends. The radial behaviors of the Lyαsurface brightness, spectral line shape, and polarization in the clumpy model with covering factorfc≳ 5 approach those of the smooth model at the sameNH I. A clumpy medium with highNH Iand lowfc≲ 2 generates Lyαfeatures via scattering that the smooth model cannot: a bright core, symmetric line profile, and polarization jump.

     
    more » « less
  5. Abstract

    We report a NOrthern Extended Millimeter Array (NOEMA) and Atacama Large Millimeter/submillimeter Array search for redshifted CO emission from the galaxies associated with seven high-metallicity ([M/H] ≥ −1.03) damped Lyαabsorbers (DLAs) atz≈ 1.64–2.51. Our observations yielded one new detection of CO(3–2) emission from a galaxy atz= 2.4604 using NOEMA, associated with thez= 2.4628 DLA toward QSO B0201+365. Including previous searches, our search results in detection rates of CO emission of5624+38% and119+26%, respectively, in the fields of DLAs with [M/H] > −0.3 and [M/H] < −0.3. Further, the Hi–selected galaxies associated with five DLAs with [M/H] > −0.3 all have high molecular gas masses, ≳5 × 1010M. This indicates that the highest-metallicity DLAs atz≈ 2 are associated with the most massive galaxies. The newly identifiedz≈ 2.4604 Hi–selected galaxy, DLA0201+365g, has an impact parameter of ≈7 kpc to the QSO sightline, and an implied molecular gas mass of (5.04 ± 0.78) × 1010× (αCO/4.36) × (r31/0.55)M. Archival Hubble Space Telescope Wide Field and Planetary Camera 2 imaging covering the rest-frame near-ultraviolet (NUV) and far-ultraviolet (FUV) emission from this galaxy yield nondetections of rest-frame NUV and FUV emission, and a 5σupper limit of 2.3Myr−1on the unobscured star formation rate (SFR). The low NUV-based SFR estimate, despite the very high molecular gas mass, indicates that DLA0201+365g either is a very dusty galaxy, or has a molecular gas depletion time that is around 2 orders of magnitude larger than that of star-forming galaxies at similar redshifts.

     
    more » « less