skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Brighter and More Massive Galaxies in the Vicinity of Lyα Nebulae
Abstract It has been well established in the local universe that galaxy properties differ based on the large-scale environment in which they reside. As luminous Lyαnebulae have been shown to trace overdense environments atz∼ 2–3, comparing the properties of galaxies within Lyαnebulae systems to those in the field can provide insight into how and when locally observed trends between galaxy properties and environment emerged. Six Lyαnebulae were discovered atz∼ 2.3 in a blind search of the GOODS-S extragalactic field, a region also covered by the 3D-HST spectroscopic survey. Utilizing 3D-HST data, we identified 86 galaxies in the vicinity of these nebulae and used statistical tests to compare their physical properties to galaxies elsewhere in the field. Galaxies lying within 320 proper kpc of a Lyαnebula are roughly half a magnitude brighter than those in the field, with higher stellar masses, higher star formation rates, and larger effective radii. Even when considering the effects of sample incompleteness, our study suggests that galaxies in overdensities atz∼ 2.3 traced by Lyαnebulae are being influenced by their environment. Furthermore, Lyα-nebula-associated galaxies lie on the same main sequence of star formation as field galaxies but have a larger proportion of high-mass galaxies, consistent with the idea that galaxy evolution is accelerated in rich environments. Expanded surveys for Lyαnebulae in other deep extragalactic fields and galaxy spectroscopic follow-up with the James Webb Space Telescope (JWST) will better constrain the demographics of Lyα-nebula-associated galaxies.  more » « less
Award ID(s):
1813016
PAR ID:
10387088
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
941
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 180
Size(s):
Article No. 180
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The GAMA J0913−0107 system is a rare conjunction of a submillimeter galaxy (SMG) atz≈ 2.7 and two background QSOs with projected separations <200 kpc. Previous high-resolution QSO absorption-line spectroscopy has revealed high Hicolumn density, extremely metal-poor (∼1% solar) gas streams in the circumgalactic medium of the SMG. Here we present deep optical integral-field spectroscopy of the system with the Keck Cosmic Web Imager (KCWI). Reaching a 2σsurface brightness limit ≈10−19erg s−1cm−2arcsec−2with ∼2 hr of integration time, we detect a filamentary Lyαnebula stretching ∼180 kpc from the SMG intercepting both QSO sightlines. This Lyαfilament may correspond to the same cool gas stream penetrating through the hot halo seen in the absorption. In contrast to Lyαnebulae around QSOs, there is no obvious local source for photoionization due to the massive dust content. While uncertain, we consider the possibility that the nebula is ionized by shocks induced by the infall, obscured star formation, and/or a boosted UV background. The SMG–QSOs conjunction multiplied the efficiency of the KCWI observations, allowing a direct comparison of Lyαnebulae in two distinct environments. We find that the nebulae around the QSOs are much brighter and show steeper surface brightness profiles than the SMG nebula. This is consistent with the additional photoionization and Lyαscattering provided by the QSOs. While illustrating the challenges of detecting Lyαnebulae around SMGs, our work also demonstrates that important insights can be gained from comparative studies of high-zLyαnebulae. 
    more » « less
  2. Aims.We investigate the physical properties and redshift evolution of simulated galaxies residing in unvirialized cosmic structures (i.e., protoclusters) at cosmic noon, to understand the influence of the environment on galaxy formation. This work is intended to build clear expectations for the ongoing ODIN (One-hundred-deg2DECam Imaging in Narrowbands) survey, which is mapping large-scale structures atz= 2.4,3.1, and 4.5 using Lyα-emitting galaxies (LAEs) as tracers. Methods.From the IllustrisTNG simulations, we define subregions centered on the most massive clusters ranked by total stellar mass atz= 0 and study the properties of galaxies within, including those of LAEs. To model the LAE population, we take a semi-analytical approach that assigns Lyαluminosity and equivalent width based on the UV luminosities to galaxies in a probabilistic manner. We investigate stellar mass, star formation rate (SFR), major merger events, and specific star formation rate of the population of star-forming galaxies and LAEs in the field- and protocluster environment and trace their evolution across cosmic time betweenz= 0−4. Results.We find that the overall shape of the UV luminosity function in simulated protocluster environments is characterized by a substantially shallower faint-end slope and a large excess on the bright end, signaling different formation histories for galaxies therein. The difference is milder for the Lyαluminosity function. While protocluster galaxies follow the same SFR-Mscaling relation as average field galaxies, a larger fraction appears to have experienced major mergers in the last 200 Myr and as a result shows enhanced star formation at a ≈60% level, leading to a flatter distribution in both SFR and Mrelative to galaxies in the average field. We find that protocluster galaxies, including LAEs, begin to quench much earlier (z∼0.8−1.6) than field galaxies (z∼0.5−0.9); our result is in qualitative agreement with recent observational results and highlights the importance of large-scale environment on the overall formation history of galaxies. 
    more » « less
  3. Abstract The UltraViolet imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey Fields (UVCANDELS) program provides Hubble Space Telescope (HST)/UVIS F275W imaging for four CANDELS fields. We combine this UV imaging with existing HST/near-IR grism spectroscopy from 3D-HST+AGHAST to directly compare the resolved rest-frame UV and H α emission for a sample of 979 galaxies at 0.7 < z < 1.5, spanning a range in stellar mass of 10 8−11.5 M ⊙ . Using a stacking analysis, we perform a resolved comparison between homogenized maps of rest-UV and H α to compute the average UV-to-H α luminosity ratio (an indicator of burstiness in star formation) as a function of galactocentric radius. We find that galaxies below stellar mass of ∼10 9.5 M ⊙ , at all radii, have a UV-to-H α ratio higher than the equilibrium value expected from constant star formation, indicating a significant contribution from bursty star formation. Even for galaxies with stellar mass ≳10 9.5 M ⊙ , the UV-to-H α ratio is elevated toward their outskirts ( R / R eff > 1.5), suggesting that bursty star formation is likely prevalent in the outskirts of even the most massive galaxies, but is likely overshadowed by their brighter cores. Furthermore, we present the UV-to-H α ratio as a function of galaxy surface brightness, a proxy for stellar mass surface density, and find that regions below ∼10 7.5 M ⊙ kpc −2 are consistent with bursty star formation, regardless of their galaxy stellar mass, potentially suggesting that local star formation is independent of global galaxy properties at the smallest scales. Last, we find galaxies at z > 1.1 to have bursty star formation, regardless of radius or surface brightness. 
    more » « less
  4. ABSTRACT We perform an aperture-matched analysis of dust-corrected H α and UV star formation rates (SFRs) using 303 star-forming galaxies with spectroscopic redshifts 1.36 < zspec < 2.66 from the MOSFIRE Deep Evolution Field survey. By combining H α and H β emission line measurements with multiwaveband resolved Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey/3D-HST imaging, we directly compare dust-corrected H α and UV SFRs, inferred assuming a fixed attenuation curve shape and constant SFHs, within the spectroscopic aperture. Previous studies have found that H α and UV SFRs inferred with these assumptions generally agree for typical star-forming galaxies, but become increasingly discrepant for galaxies with higher SFRs (≳100 M⊙ yr−1), with H α-to-UV SFR ratios being larger for these galaxies. Our analysis shows that this trend persists even after carefully accounting for the apertures over which H α and UV-based SFRs (and the nebular and stellar continuum reddening) are derived. Furthermore, our results imply that H α SFRs may be higher in the centres of large galaxies (i.e. where there is coverage by the spectroscopic aperture) compared to their outskirts, which could be indicative of inside-out galaxy growth. Overall, we suggest that the persistent difference between nebular and stellar continuum reddening and high H α-to-UV SFR ratios at the centres of large galaxies may be indicative of a patchier distribution of dust in galaxies with high SFRs. 
    more » « less
  5. Abstract We investigate the effects of stellar populations and sizes on Lyαescape in 27 spectroscopically confirmed and 35 photometric Lyαemitters (LAEs) atz≈ 2.65 in seven fields of the Boötes region of the NOAO Deep Wide-Field Survey. We use deep HST/WFC3 imaging to supplement ground-based observations and infer key galaxy properties. Compared to typical star-forming galaxies (SFGs) at similar redshifts, the LAEs are less massive (M≈ 107–109M), younger (ages ≲1 Gyr), smaller (re< 1 kpc), and less dust-attenuated (E(B−V) ≤ 0.26 mag) but have comparable star formation rates (SFRs ≈ 1–100Myr−1). Some of the LAEs in the sample may be very young galaxies having low nebular metallicities (Zneb≲ 0.2Z) and/or high ionization parameters ( log ( U ) 2.4 ). Motivated by previous studies, we examine the effects of the concentration of star formation and gravitational potential on Lyαescape by computing SFR surface density, ΣSFR, and specific SFR surface density, ΣsSFR. For a given ΣSFR, the Lyαescape fraction is higher for LAEs with lower stellar masses. The LAEs have a higher ΣsSFR, on average, compared to SFGs. Our results suggest that compact star formation in a low gravitational potential yields conditions amenable to the escape of Lyαphotons. These results have important implications for the physics of Lyαradiative transfer and for the type of galaxies that may contribute significantly to cosmic reionization. 
    more » « less