Utilizing metal–organic frameworks (MOFs) as reinforcing fillers for polymer composites is a promising strategy because of the low density, high specific modulus, and tunable aspect ratio (AR). However, it has not been demonstrated for the MOF-reinforced polymer composite using MOFs with high AR and polymer-grafted surface, both of which are extremely important factors for efficient load transfer and favorable particle–matrix interaction. To this end, we designed an MOF–polymer composite system using high AR MOF PCN-222 as the mechanical reinforcer. Moreover, we developed a synthetic route to graft poly(methyl methacrylate) (PMMA) from the surface of PCN-222 through surface-initiated atomic transfer radical polymerization (SI-ATRP). The successful growth of PMMA on the surface of PCN-222 was confirmed via proton nuclear magnetic resonance and infrared spectroscopy. Through thermogravimetric analysis, the grafting density was found to be 0.18 chains/nm2. The grafted polymer molecular weight was controlled ranging from 50.3 to 158 kDa as suggested by size exclusion chromatography. Finally, we fabricated MOF–polymer composite films by the doctor-blading technique and measured the mechanical properties through the tension mode of dynamic mechanical analysis. We found that the mechanical properties of the composites were improved with increasing grafted PMMA molecular weight. The maximum reinforcement, a 114% increase in Young’s modulus at 0.5 wt % MOF loading in comparison to pristine PMMA films, was achieved when the grafted molecular weight was higher than the matrix molecular weight, which was in good agreement with previous literature. Moreover, our composite presents the highest reinforcement measured via Young’s modulus at low weight loading among MOF-reinforced polymer composites due to the high MOF AR and enhanced interface. Our approach offers great potential for lightweight mechanical reinforcement with high AR MOFs and a generalizable grafting-from strategy for porphyrin-based MOFs.
more »
« less
Experimental observation of metal–organic framework–polymer interaction forces and intercalation
We attach a MOF crystallite to an atomic force microscope cantilever to realize a system for rapidly and quantitatively studying the interaction between single-crystal MOFs and polymer films. Using this method, we find evidence of polymer intercalation into MOF pores. This approach can accelerate composite design.
more »
« less
- Award ID(s):
- 1661412
- PAR ID:
- 10387143
- Date Published:
- Journal Name:
- Chemical Communications
- ISSN:
- 1359-7345
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recently, metal–organic framework (MOF)-based polymeric substrates show promising performance in many engineering and technology fields. However, a commonly known drawback of MOF/polymer composites is MOF crystal encapsulation and reduced surface area. This work reports a facile and gentle strategy to produce self-supported MOF predominant hollow fiber mats. A wide range of hollow MOFs including MIL-53(Al)–NH 2 , Al-PMOF, and ZIF-8 are successfully fabricated by our synthetic method. The synthetic strategy combines atomic layer deposition (ALD) of metal oxides onto polymer fibers and subsequent selective removal of polymer components followed by conversion of remaining hollow metal oxides into freestanding MOF predominant hollow fiber structures. The hollow MOFs show boosted surface area, superb porosity, and excellent pore accessibility, and exhibit a significantly improved performance in CO 2 adsorption (3.30 mmol g −1 ), CO 2 /N 2 separation selectivity (24.9 and 21.2 for 15/85 and 50/50 CO 2 /N 2 mixtures), and catalytic removal of HCHO (complete oxidation of 150 ppm within 60 min).more » « less
-
Abstract The fabrication of MOF polymer composite materials enables the practical applications of MOF‐based technology, in particular for protective suits and masks. However, traditional production methods typically require organic solvent for processing which leads to environmental pollution, low‐loading efficiency, poor accessibility, and loss of functionality due to poor solvent resistance properties. For the first time, we have developed a microbial synthesis strategy to prepare a MOF/bacterial cellulose nanofiber composite sponge. The prepared sponge exhibited a hierarchically porous structure, high MOF loading (up to ≈90 %), good solvent resistance, and high catalytic activity for the liquid‐ and solid‐state hydrolysis of nerve agent simulants. Moreover, the MOF/ bacterial cellulose composite sponge reported here showed a nearly 8‐fold enhancement in the protection against an ultra‐toxic nerve agent (GD) in permeability studies as compared to a commercialized adsorptive carbon cloth. The results shown here present an essential step toward the practical application of MOF‐based protective gear against nerve agents.more » « less
-
Abstract Hypervalent iodine (HVI) reagents have gained much attention as versatile oxidants because of their low toxicity, mild reactivity, easy handling, and availability. Despite their unique reactivity and other advantageous properties, stoichiometric HVI reagents are associated with the disadvantage of generating non-recyclable iodoarenes as waste/co-products. To overcome these drawbacks, the syntheses and utilization of various recyclable hypervalent iodine reagents have been established in recent years. This review summarizes the development of various recyclable non-polymeric, polymer-supported, ionic-liquid-supported, and metal–organic framework (MOF)-hybridized HVI reagents. 1 Introduction 2 Polymer-Supported Hypervalent Iodine Reagents 2.1 Polymer-Supported Hypervalent Iodine(III) Reagents 2.2 Polymer-Supported Hypervalent Iodine(V) Reagents 3 Non-Polymeric Recyclable Hypervalent Iodine Reagents 3.1 Non-Polymeric Recyclable Hypervalent Iodine(III) Reagents 3.2 Recyclable Non-Polymeric Hypervalent Iodine(V) Reagents 3.3 Fluorous Hypervalent Iodine Reagents 4 Ionic-Liquid/Ion-Supported Hypervalent Iodine Reagents 5 Metal–Organic Framework (MOF)-Hybridized Hypervalent Iodine Reagents 6 Conclusionmore » « less
-
Abstract A new class of core–shell adsorbents has been created by electrospun metal–organic framework (MOF) particles embedded in polymer nanofibers, which have provided many unique properties compared to the existing MOF coating technologies. For the first time, we demonstrate the improved adsorption selectivity of CO2over N2using electrospun polymer/ZIF‐8 adsorbents in experiments. Furthermore, an analytical model based on the assumption that the diffusivity in core is 10 times higher than that in shell is developed to describe the theory of improved selectivity for core–shell adsorbents that is validated against a more accurate finite element model developed in COMSOL. Our model shows three regimes including exclusive shell uptake, linear core uptake, and asymptotic core uptake. These regimes are related to material properties and uptake times, which could be used as design criteria to balance core stability, maximum selectivity, and maximum uptake. An advanced HAADF STEM tomography (Movie ) shows that the shell thickness in the case of polymer/ZIF‐8 is on the order of 10 nm, allowing the regime of maximum selectivity to be realized. Kinetically limited adsorption tests at 45°C demonstrate that these composite fibers can perform in a regime of selectivity and uptake for the separation of CO2and N2that is unobtainable by either the MOF or fiber independently, showing a great potential for postcombustion CO2capture.more » « less
An official website of the United States government

