The enteric nervous system (ENS) is a complex series of interconnected neurons and glia that reside within and along the entire length of the gastrointestinal tract. ENS functions are vital to gut homeostasis and digestion, including local control of peristalsis, water balance, and intestinal cell barrier function. How the ENS develops during embryological development is a topic of great concern, as defects in ENS development can result in various diseases, the most common being Hirschsprung disease, in which variable regions of the infant gut lack ENS, with the distal colon most affected. Deciphering how the ENS forms from its progenitor cells, enteric neural crest cells, is an active area of research across various animal models. The vertebrate animal model, zebrafish, has been increasingly leveraged to understand early ENS formation, and over the past 20 years has contributed to our knowledge of the genetic regulation that underlies enteric development. In this review, I summarize our knowledge regarding the genetic regulation of zebrafish enteric neuronal development, and based on the most current literature, present a gene regulatory network inferred to underlie its construction. I also provide perspectives on areas for future zebrafish ENS research.
more »
« less
A New Transgenic Tool to Study the Ret Signaling Pathway in the Enteric Nervous System
The receptor tyrosine kinase Ret plays a critical role in regulating enteric nervous system (ENS) development. Ret is important for proliferation, migration, and survival of enteric progenitor cells (EPCs). Ret also promotes neuronal fate, but its role during neuronal differentiation and in the adult ENS is less well understood. Inactivating RET mutations are associated with ENS diseases, e.g., Hirschsprung Disease, in which distal bowel lacks ENS cells. Zebrafish is an established model system for studying ENS development and modeling human ENS diseases. One advantage of the zebrafish model system is that their embryos are transparent, allowing visualization of developmental phenotypes in live animals. However, we lack tools to monitor Ret expression in live zebrafish. Here, we developed a new BAC transgenic line that expresses GFP under the ret promoter. We find that EPCs and the majority of ENS neurons express ret:GFP during ENS development. In the adult ENS, GFP+ neurons are equally present in females and males. In homozygous mutants of ret and sox10—another important ENS developmental regulator gene—GFP+ ENS cells are absent. In summary, we characterize a ret:GFP transgenic line as a new tool to visualize and study the Ret signaling pathway from early development through adulthood.
more »
« less
- Award ID(s):
- 2143267
- PAR ID:
- 10387181
- Date Published:
- Journal Name:
- International Journal of Molecular Sciences
- Volume:
- 23
- Issue:
- 24
- ISSN:
- 1422-0067
- Page Range / eLocation ID:
- 15667
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Background The neural crest‐derived enteric nervous system (ENS) provides the intrinsic innervation of the gut with diverse neuronal subtypes and glial cells. The ENS regulates all essential gut functions, such as motility, nutrient uptake, immune response, and microbiota colonization. Deficits in ENS neuron numbers and composition cause debilitating gut dysfunction. Yet, few studies have identified genes that control neuronal differentiation and the generation of the diverse neuronal subtypes in the ENS. Methods Utilizing existing CRISPR/Cas9 genome editing technology in zebrafish, we have developed a rapid and scalable screening approach for identifying genes that regulate ENS neurogenesis. Key Results As a proof‐of‐concept, F0 guide RNA‐injected larvae (F0 crispants) targeting the known ENS regulator genes sox10 , ret , or phox2bb phenocopied known ENS phenotypes with high efficiency. We evaluated 10 transcription factor candidate genes as regulators of ENS neurogenesis and function. F0 crispants for five of the tested genes have fewer ENS neurons. Secondary assays in F0 crispants for a subset of the genes that had fewer neurons reveal no effect on enteric progenitor cell migration but differential changes in gut motility. Conclusions Our multistep, yet straightforward CRISPR screening approach in zebrafish tests the genetic basis of ENS developmental and disease gene functions that will facilitate the high‐throughput evaluation of candidate genes from transcriptomic, genome‐wide association, or other ENS‐omics studies. Such in vivo ENS F0 crispant screens will contribute to a better understanding of ENS neuronal development regulation in vertebrates and what goes awry in ENS disorders.more » « less
-
Abstract The enteric nervous system (ENS) is the intrinsic nervous system of the gut and controls essential functions, such as gut motility, intestinal barrier function, and water balance. The ENS displays a complex 3D architecture within the context of the gut and specific transcriptional states needed to control gut homeostasis. During development, the ENS develops from enteric neural progenitor cells (ENPs) that migrate into the gut and differentiate into functionally diverse neuron types. Incorrect ENS development can disrupt ENS function and induce various gut disorders, including the congenital disease Hirschsprung disease, or various other functional gut neurological disorders, such as esophageal achalasia. In this study, we used the zebrafish larval model and performed whole gut spatial genomic analysis (SGA) of the differentiating ENS at cellular resolution. To that end, a pipeline was developed that integrated early and late developmental ENS stages by linking various spatial and transcriptional dimensions to discover regionalized cellular groups and their co-expression similarity. We identified 3D networks of intact ENS surrounding the gut and predicted cellular connectivity properties based on the stage. Spatial variable genes, such ashoxb5b,hoxa4a,etv1, andret, were regionalized along gut axes, suggesting they may have a precise spatiotemporal control of ENS development. The application of SGA to ENS development provides new insights into its cellular transcriptional networks and interactions, and provides a baseline data set to further advance our understanding of gut neurodevelopmental disorders such as Hirschsprung disease and congenital enteric neuropathies.more » « less
-
Grinblat, Yevgenya (Ed.)The vertebrate enteric nervous system (ENS) is a crucial network of enteric neurons and glia resident within the entire gastrointestinal tract (GI). Overseeing essential GI functions such as gut motility and water balance, the ENS serves as a pivotal bidirectional link in the gut-brain axis. During early development, the ENS is primarily derived from enteric neural crest cells (ENCCs). Disruptions to ENCC development, as seen in conditions like Hirschsprung disease (HSCR), lead to the absence of ENS in the GI, particularly in the colon. In this study, using zebrafish, we devised anin vivoF0 CRISPR-based screen employing a robust, rapid pipeline integrating single-cell RNA sequencing, CRISPR reverse genetics, and high-content imaging. Our findings unveil various genes, including those encoding opioid receptors, as possible regulators of ENS establishment. In addition, we present evidence that suggests opioid receptor involvement in the neurochemical coding of the larval ENS. In summary, our work presents a novel, efficient CRISPR screen targeting ENS development, facilitating the discovery of previously unknown genes, and increasing knowledge of nervous system construction.more » « less
-
Elevated Hoxb5b Expands Vagal Neural Crest Pool and Blocks Enteric Neuronal Development in ZebrafishNeural crest cells (NCCs) are a migratory, transient, and multipotent stem cell population essential to vertebrate embryonic development, contributing to numerous cell lineages in the adult organism. While great strides have been made in elucidating molecular and cellular events that drive NCC specification, comprehensive knowledge of the genetic factors that orchestrate NCC developmental programs is still far from complete. We discovered that elevated Hoxb5b levels promoted an expansion of zebrafish NCCs, which persisted throughout multiple stages of development. Correspondingly, elevated Hoxb5b also specifically expanded expression domains of the vagal NCC markers foxd3 and phox2bb . Increases in NCCs were most apparent after pulsed ectopic Hoxb5b expression at early developmental stages, rather than later during differentiation stages, as determined using a novel transgenic zebrafish line. The increase in vagal NCCs early in development led to supernumerary Phox2b + enteric neural progenitors, while leaving many other NCC-derived tissues without an overt phenotype. Surprisingly, these NCC-derived enteric progenitors failed to expand properly into sufficient quantities of enterically fated neurons and stalled in the gut tissue. These results suggest that while Hoxb5b participates in vagal NCC development as a driver of progenitor expansion, the supernumerary, ectopically localized NCC fail to initiate expansion programs in timely fashion in the gut. All together, these data point to a model in which Hoxb5b regulates NCCs both in a tissue specific and temporally restricted manner.more » « less
An official website of the United States government

