Infrasound sensors are deployed in a variety of spatial configurations and scales for geophysical monitoring, including networks of single sensors and networks of multisensor infrasound arrays. Infrasound signal detection strategies exploiting these data commonly make use of intersensor correlation and coherence (array processing, multichannel correlation); network-based tracking of signal features (e.g. reverse time migration); or a combination of these such as backazimuth cross-bearings for multiple arrays. Single-sensor trace-based denoising techniques offer significant potential to improve all of these various infrasound data processing strategies, but have not previously been investigated in detail. Single-sensor denoising represents a pre-processing step that could reduce the effects of ambient infrasound and wind noise in infrasound signal association and location workflows. We systematically investigate the utility of a range of single-sensor denoising methods for infrasound data processing, including noise gating, non-negative matrix factorization, and data-adaptive Wiener filtering. For the data testbed, we use the relatively dense regional infrasound network in Alaska, which records a high rate of volcanic eruptions with signals varying in power, duration, and waveform and spectral character. We primarily use data from the 2016–2017 Bogoslof volcanic eruption, which included multiple explosions, and synthetics. The Bogoslof volcanic sequence provides an opportunity to investigatemore »
We applied nonlinear thresholding and scale–time gating in the continuous wavelet transform (CWT) domain to denoise, identify and characterize seismic phases contained in gradiometer and phased array waveforms of four seismic events recorded during the 2016 Incorporated Research Institutions of Seismology Wavefields Experiment in northern Oklahoma. A dense, 80-element three component phased array was subset from the linear array deployments to examine background noise, waveform coherence and seismic wave composition for local explosion and earthquake waveforms. CWT techniques were also used to significantly improve gradiometery analyses for data recorded by the geodetic array subexperiment. We observed as much as two orders of magnitude gain in the data signal-to-noise ratio. We also saw improvement in array beam quality after denoising the seismic data. Using the signal partitioning technique, we were able to extract and identify many phases based on their positions on the scale–time plane. CWT denoising and wavefield decomposition techniques also improved gradiometry analysis results from the 112-element geodetic array (also called the gradiometer) since waves could be separated before the computation of wave attributes. The operations of removing noise and gating out signal phases improved signal coherence across array records and provided clear P wave onsets on horizontal more »
- Publication Date:
- NSF-PAR ID:
- 10387253
- Journal Name:
- Geophysical Journal International
- Volume:
- 233
- Issue:
- 1
- Page Range or eLocation-ID:
- p. 529-548
- ISSN:
- 0956-540X
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
SUMMARY -
SUMMARY Crustal seismic velocity models provide essential information for many applications including earthquake source properties, simulations of ground motion and related derivative products. We present a systematic workflow for assessing the accuracy of velocity models with full-waveform simulations. The framework is applied to four regional seismic velocity models for southern California: CVM-H15.11, CVM-S4.26, CVM-S4.26.M01 that includes a shallow geotechnical layer, and the model of Berg et al. For each model, we perform 3-D viscoelastic wave propagation simulations for 48 virtual seismic noise sources (down to 2 s) and 44 moderate-magnitude earthquakes (down to 2 s generally and 0.5 s for some cases) assuming a minimum shear wave velocity of 200 m s–1. The synthetic waveforms are compared with observations associated with both earthquake records and noise cross-correlation data sets. We measure, at multiple period bands for well-isolated seismic phases, traveltime delays and normalized zero-lag cross-correlation coefficients between the synthetic and observed data. The obtained measurements are summarized using the mean absolute derivation of time delay and the mean correlation coefficient. These two metrics provide reliable statistical representations of model quality with consistent results in all data sets. In addition to assessing the overall (average) performance of different models in the entire study area, wemore »
-
SUMMARY A fleet of autonomously drifting profiling floats equipped with hydrophones, known by their acronym mermaid, monitors worldwide seismic activity from inside the oceans. The instruments are programmed to detect and transmit acoustic pressure conversions from teleseismic P wave arrivals for use in mantle tomography. Reporting seismograms in near-real time, within hours or days after they were recorded, the instruments are not usually recovered, but if and when they are, their memory buffers can be read out. We present a unique 1-yr-long data set of sound recorded at frequencies between 0.1 and 20 Hz in the South Pacific around French Polynesia by a mermaid float that was, in fact, recovered. Using time-domain, frequency-domain and time-frequency-domain techniques to comb through the time-series, we identified signals from 213 global earthquakes known to published catalogues, with magnitudes 4.6–8.0, and at epicentral distances between 24° and 168°. The observed signals contain seismoacoustic conversions of compressional and shear waves travelling through crust, mantle and core, including P, S, Pdif, Sdif, PKIKP, SKIKS, surface waves and hydroacoustic T phases. Only 10 earthquake records had been automatically reported by the instrument—the others were deemed low-priority by the onboard processing algorithm. After removing all seismic signals from the record,more »
-
SUMMARY Seismograms contain multiple sources of seismic waves, from distinct transient signals such as earthquakes to continuous ambient seismic vibrations such as microseism. Ambient vibrations contaminate the earthquake signals, while the earthquake signals pollute the ambient noise’s statistical properties necessary for ambient-noise seismology analysis. Separating ambient noise from earthquake signals would thus benefit multiple seismological analyses. This work develops a multitask encoder–decoder network named WaveDecompNet to separate transient signals from ambient signals directly in the time domain for 3-component seismograms. We choose the active-volcanic Big Island in Hawai’i as a natural laboratory given its richness in transients (tectonic and volcanic earthquakes) and diffuse ambient noise (strong microseism). The approach takes a noisy 3-component seismogram as input and independently predicts the 3-component earthquake and noise waveforms. The model is trained on earthquake and noise waveforms from the STandford EArthquake Dataset (STEAD) and on the local noise of seismic station IU.POHA. We estimate the network’s performance by using the explained variance metric on both earthquake and noise waveforms. We explore different neural network designs for WaveDecompNet and find that the model with long-short-term memory (LSTM) performs best over other structures. Overall, we find that WaveDecompNet provides satisfactory performance down to a signal-to-noisemore »
-
The US Gulf Coast has several massive underground caverns within salt domes. These caverns can store vast amounts of hydrocarbons, including the US Strategic Petroleum Reserve, used to increase energy supplies during emergency shortages. Unstable caverns can collapse, leading to sinkhole formation and the release of gas. Previous studies have identified elevated seismicity and surface deformation as precursors to salt cavern collapse and sinkhole formation. However, identifying sporadic seismicity can be complicated, requiring complex methods for robust detection and characterization of events, especially in high-noise settings. We investigate deformation of the Sorrento salt dome in Louisiana using 8 months of data from seismic arrays first deployed in February 2020. Our arrays are comprised of 12 to 17 SmartSolo 3C seismic nodes, spaced 0.2-1.9 km and installed around the dome. We recorded more than 1.2 Tb of data, sampled at 500 Hz. Waveforms of identified events range from <1 s to over 30 s in length, rendering power detection methods like the STA/LTA inefficient. Building on recent studies that use machine learning methods to identify small magnitude (Mw -2.0 to 2.0) earthquakes, we developed a custom-trained convolutional neural network and applied it over sliding windows of the waveforms to detect earthquakes,more »