skip to main content

Title: Partitioning local seismogram wavefields using continuous wavelet transform methods for IRIS wavefield experiment arrays

We applied nonlinear thresholding and scale–time gating in the continuous wavelet transform (CWT) domain to denoise, identify and characterize seismic phases contained in gradiometer and phased array waveforms of four seismic events recorded during the 2016 Incorporated Research Institutions of Seismology Wavefields Experiment in northern Oklahoma. A dense, 80-element three component phased array was subset from the linear array deployments to examine background noise, waveform coherence and seismic wave composition for local explosion and earthquake waveforms. CWT techniques were also used to significantly improve gradiometery analyses for data recorded by the geodetic array subexperiment. We observed as much as two orders of magnitude gain in the data signal-to-noise ratio. We also saw improvement in array beam quality after denoising the seismic data. Using the signal partitioning technique, we were able to extract and identify many phases based on their positions on the scale–time plane. CWT denoising and wavefield decomposition techniques also improved gradiometry analysis results from the 112-element geodetic array (also called the gradiometer) since waves could be separated before the computation of wave attributes. The operations of removing noise and gating out signal phases improved signal coherence across array records and provided clear P wave onsets on horizontal more » records, which can mitigate phase picking error and resulting event location uncertainty.

« less
Publication Date:
Journal Name:
Geophysical Journal International
Page Range or eLocation-ID:
p. 529-548
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    Infrasound sensors are deployed in a variety of spatial configurations and scales for geophysical monitoring, including networks of single sensors and networks of multisensor infrasound arrays. Infrasound signal detection strategies exploiting these data commonly make use of intersensor correlation and coherence (array processing, multichannel correlation); network-based tracking of signal features (e.g. reverse time migration); or a combination of these such as backazimuth cross-bearings for multiple arrays. Single-sensor trace-based denoising techniques offer significant potential to improve all of these various infrasound data processing strategies, but have not previously been investigated in detail. Single-sensor denoising represents a pre-processing step that could reduce the effects of ambient infrasound and wind noise in infrasound signal association and location workflows. We systematically investigate the utility of a range of single-sensor denoising methods for infrasound data processing, including noise gating, non-negative matrix factorization, and data-adaptive Wiener filtering. For the data testbed, we use the relatively dense regional infrasound network in Alaska, which records a high rate of volcanic eruptions with signals varying in power, duration, and waveform and spectral character. We primarily use data from the 2016–2017 Bogoslof volcanic eruption, which included multiple explosions, and synthetics. The Bogoslof volcanic sequence provides an opportunity to investigatemore »regional infrasound detection, association, and location for a set of real sources with varying source spectra subject to anisotropic atmospheric propagation and varying noise levels (both incoherent wind noise and coherent ambient infrasound, primarily microbaroms). We illustrate the advantages and disadvantages of the different denoising methods in categories such as event detection, waveform distortion, the need for manual data labelling, and computational cost. For all approaches, denoising generally performs better for signals with higher signal-to-noise ratios and with less spectral and temporal overlap between signals and noise. Microbaroms are the most globally pervasive and repetitive coherent ambient infrasound noise source, with such noise often referred to as clutter or interference. We find that denoising offers significant potential for microbarom clutter reduction. Single-channel denoising of microbaroms prior to standard array processing enhances both the quantity and bandwidth of detectable volcanic events. We find that reduction of incoherent wind noise is more challenging using the denoising methods we investigate; thus, station hardware (wind noise reduction systems) and site selection remain critical and cannot be replaced by currently available digital denoising methodologies. Overall, we find that adding single-channel denoising as a component in the processing workflow can benefit a variety of infrasound signal detection, association, and location schemes. The denoising methods can also isolate the noise itself, with utility in statistically characterizing ambient infrasound noise.

    « less

    Crustal seismic velocity models provide essential information for many applications including earthquake source properties, simulations of ground motion and related derivative products. We present a systematic workflow for assessing the accuracy of velocity models with full-waveform simulations. The framework is applied to four regional seismic velocity models for southern California: CVM-H15.11, CVM-S4.26, CVM-S4.26.M01 that includes a shallow geotechnical layer, and the model of Berg et al. For each model, we perform 3-D viscoelastic wave propagation simulations for 48 virtual seismic noise sources (down to 2 s) and 44 moderate-magnitude earthquakes (down to 2 s generally and 0.5 s for some cases) assuming a minimum shear wave velocity of 200 m s–1. The synthetic waveforms are compared with observations associated with both earthquake records and noise cross-correlation data sets. We measure, at multiple period bands for well-isolated seismic phases, traveltime delays and normalized zero-lag cross-correlation coefficients between the synthetic and observed data. The obtained measurements are summarized using the mean absolute derivation of time delay and the mean correlation coefficient. These two metrics provide reliable statistical representations of model quality with consistent results in all data sets. In addition to assessing the overall (average) performance of different models in the entire study area, wemore »examine spatial variations of the models’ quality. All examined models show good phase and waveform agreements for surface waves at periods longer than 5 s, and discrepancies at shorter periods reflecting small-scale heterogeneities and near-surface structures. The model performing best overall is CVM-S4.26.M01. The largest misfits for both body and surface waves are in basin structures and around large fault zones. Inaccuracies generated in these areas may affect tomography and model simulation results at other regions. The seismic velocity models for southern California can be improved by adding better resolved structural representations of the shallow crust and volumes around the main faults.

    « less
  3. SUMMARY A fleet of autonomously drifting profiling floats equipped with hydrophones, known by their acronym mermaid, monitors worldwide seismic activity from inside the oceans. The instruments are programmed to detect and transmit acoustic pressure conversions from teleseismic P wave arrivals for use in mantle tomography. Reporting seismograms in near-real time, within hours or days after they were recorded, the instruments are not usually recovered, but if and when they are, their memory buffers can be read out. We present a unique 1-yr-long data set of sound recorded at frequencies between 0.1 and 20 Hz in the South Pacific around French Polynesia by a mermaid float that was, in fact, recovered. Using time-domain, frequency-domain and time-frequency-domain techniques to comb through the time-series, we identified signals from 213 global earthquakes known to published catalogues, with magnitudes 4.6–8.0, and at epicentral distances between 24° and 168°. The observed signals contain seismoacoustic conversions of compressional and shear waves travelling through crust, mantle and core, including P, S, Pdif, Sdif, PKIKP, SKIKS, surface waves and hydroacoustic T phases. Only 10 earthquake records had been automatically reported by the instrument—the others were deemed low-priority by the onboard processing algorithm. After removing all seismic signals from the record,more »and also those from other transient, dominantly non-seismic, sources, we are left with the infrasonic ambient noise field recorded at 1500 m depth. We relate the temporally varying noise spectral density to a time-resolved ocean-wave model, WAVEWATCH III. The noise record is extremely well explained, both in spectral shape and in temporal variability, by the interaction of oceanic surface gravity waves. These produce secondary microseisms at acoustic frequencies between 0.1 and 1 Hz according to the well-known frequency-doubling mechanism.« less

    Seismograms contain multiple sources of seismic waves, from distinct transient signals such as earthquakes to continuous ambient seismic vibrations such as microseism. Ambient vibrations contaminate the earthquake signals, while the earthquake signals pollute the ambient noise’s statistical properties necessary for ambient-noise seismology analysis. Separating ambient noise from earthquake signals would thus benefit multiple seismological analyses. This work develops a multitask encoder–decoder network named WaveDecompNet to separate transient signals from ambient signals directly in the time domain for 3-component seismograms. We choose the active-volcanic Big Island in Hawai’i as a natural laboratory given its richness in transients (tectonic and volcanic earthquakes) and diffuse ambient noise (strong microseism). The approach takes a noisy 3-component seismogram as input and independently predicts the 3-component earthquake and noise waveforms. The model is trained on earthquake and noise waveforms from the STandford EArthquake Dataset (STEAD) and on the local noise of seismic station IU.POHA. We estimate the network’s performance by using the explained variance metric on both earthquake and noise waveforms. We explore different neural network designs for WaveDecompNet and find that the model with long-short-term memory (LSTM) performs best over other structures. Overall, we find that WaveDecompNet provides satisfactory performance down to a signal-to-noisemore »ratio (SNR) of 0.1. The potential of the method is (1) to improve broad-band SNR of transient (earthquake) waveforms and (2) to improve local ambient noise to monitor the Earth’s structure using ambient noise signals. To test this, we apply a short-time average to a long-time average filter and improve the number of detected events. We also measure single-station cross-correlation functions of the recovered ambient noise and establish their improved coherence through time and over different frequency bands. We conclude that WaveDecompNet is a promising tool for a broad range of seismological research.

    « less
  5. The US Gulf Coast has several massive underground caverns within salt domes. These caverns can store vast amounts of hydrocarbons, including the US Strategic Petroleum Reserve, used to increase energy supplies during emergency shortages. Unstable caverns can collapse, leading to sinkhole formation and the release of gas. Previous studies have identified elevated seismicity and surface deformation as precursors to salt cavern collapse and sinkhole formation. However, identifying sporadic seismicity can be complicated, requiring complex methods for robust detection and characterization of events, especially in high-noise settings. We investigate deformation of the Sorrento salt dome in Louisiana using 8 months of data from seismic arrays first deployed in February 2020. Our arrays are comprised of 12 to 17 SmartSolo 3C seismic nodes, spaced 0.2-1.9 km and installed around the dome. We recorded more than 1.2 Tb of data, sampled at 500 Hz. Waveforms of identified events range from <1 s to over 30 s in length, rendering power detection methods like the STA/LTA inefficient. Building on recent studies that use machine learning methods to identify small magnitude (Mw -2.0 to 2.0) earthquakes, we developed a custom-trained convolutional neural network and applied it over sliding windows of the waveforms to detect earthquakes,more »pick P-wave arrivals, and reduce false positives. We correlated waveforms across all stations and identified events when they were observed on at least 60% of the array stations. We used spectrograms to infer fluid content around sources and to eliminate anthropogenic signals, including but not limited to, helicopters, trains, and boats from the catalog. Event locations were used to identify microearthquake swarms within the dome. Our preliminary results show elevated seismicity in the days preceding a well failure, suggesting our method can be used to monitor underground caverns and similar settings, such as mines, dams, and geothermal sites.« less