skip to main content


Title: Effects of phytoplankton, viral communities, and warming on free-living and particle-associated marine prokaryotic community structure
Abstract

Free-living and particle-associated marine prokaryotes have physiological, genomic, and phylogenetic differences, yet factors influencing their temporal dynamics remain poorly constrained. In this study, we quantify the entire microbial community composition monthly over several years, including viruses, prokaryotes, phytoplankton, and total protists, from the San-Pedro Ocean Time-series using ribosomal RNA sequencing and viral metagenomics. Canonical analyses show that in addition to physicochemical factors, the double-stranded DNA viral community is the strongest factor predicting free-living prokaryotes, explaining 28% of variability, whereas the phytoplankton (via chloroplast 16S rRNA) community is strongest with particle-associated prokaryotes, explaining 31% of variability. Unexpectedly, protist community explains little variability. Our findings suggest that biotic interactions are significant determinants of the temporal dynamics of prokaryotes, and the relative importance of specific interactions varies depending on lifestyles. Also, warming influenced the prokaryotic community, which largely remained oligotrophic summer-like throughout 2014–15, with cyanobacterial populations shifting from cold-water ecotypes to warm-water ecotypes.

 
more » « less
Award ID(s):
1737409
NSF-PAR ID:
10387331
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Community dynamics are central in microbial ecology, yet we lack studies comparing diversity patterns among marine protists and prokaryotes over depth and multiple years. Here, we characterized microbes at the San-Pedro Ocean Time series (2005–2018), using SSU rRNA gene sequencing from two size fractions (0.2–1 and 1–80 μm), with a universal primer set that amplifies from both prokaryotes and eukaryotes, allowing direct comparisons of diversity patterns in a single set of analyses. The 16S + 18S rRNA gene composition in the small size fraction was mostly prokaryotic (>92%) as expected, but the large size fraction unexpectedly contained 46–93% prokaryotic 16S rRNA genes. Prokaryotes and protists showed opposite vertical diversity patterns; prokaryotic diversity peaked at mid-depth, protistan diversity at the surface. Temporal beta-diversity patterns indicated prokaryote communities were much more stable than protists. Although the prokaryotic communities changed monthly, the average community stayed remarkably steady over 14 years, showing high resilience. Additionally, particle-associated prokaryotes were more diverse than smaller free-living ones, especially at deeper depths, contributed unexpectedly by abundant and diverse SAR11 clade II. Eukaryotic diversity was strongly correlated with the diversity of particle-associated prokaryotes but not free-living ones, reflecting that physical associations result in the strongest interactions, including symbioses, parasitism, and decomposer relationships.

     
    more » « less
  2. Summary

    In the oceans and seas, environmental conditions change over multiple temporal and spatial scales. Here, we ask what factors affect the bacterial community structure across time, depth and size fraction during six seasonal cruises (2 years) in the ultra‐oligotrophic Eastern Mediterranean Sea. The bacterial community varied most between size fractions (free‐living (FL) vs. particle‐associated), followed by depth and finally season. The FL community was taxonomically richer and more stable than the particle‐associated (PA) one, which was characterized by recurrent ‘blooms’ of heterotrophic bacteria such asAlteromonasandRalstonia. The heterotrophic FL and PA communities were also correlated with different environmental parameters: the FL population correlated with depth and phytoplankton, whereas PA bacteria were correlated primarily with the time of sampling. A significant part of the variability in community structure could, however, not be explained by the measured parameters. The metabolic potential of the PA community, predicted from 16S rRNA amplicon data using PICRUSt, was enriched in pathways associated with the degradation and utilization of biological macromolecules, as well as plastics, other petroleum products and herbicides. The FL community was enriched in predicted pathways for the metabolism of inositol phosphate, a potential phosphorus source, and of polycyclic aromatic hydrocarbons.

     
    more » « less
  3. Abstract

    In lakes, seasonal phytoplankton blooms and allochthonous plant debris intensify particulate organic carbon fluxes to the lakebed. Microbes associated with these particles likely vary with organic substrate lability and redox conditions. To explore microbial compositional responses to these variables, we analyzed particle‐associated and free‐living assemblages in the permanently redox‐stratified Fayetteville Green Lake using 16 S rRNA amplicon sequencing during the peak and end of cyanobacterial and photoautotrophic sulfur bacterial blooms. Assemblage compositions were strongly influenced by redox conditions and particle association. Assemblage compositions varied seasonally above the lower oxycline boundary (summer—generalist heterotrophs; autumn—iron reducers and specialist heterotrophs), but not in the anoxic region below. Particle‐associated assemblages were less diverse than free‐living assemblages and were dominated by heterotrophs that putatively metabolize complex organic substrates, purple sulfur bacteria, sulfur‐cyclingDesulfocapsa, and eukaryotic algae. The least diverse particle‐associated assemblages occurred near the lower oxycline boundary, where microbial activities and abundances were highest, and anoxygenic photoautotrophs were enriched. The low‐diversity particle‐associated heterotrophs likely remineralize complex organic substrates, releasing simpler organic substrates to free‐living assemblages during transit, thereby influencing surrounding microbial diversity and function. Our results challenge the paradigm that phytoplankton from the shallow photic zone are the primary contributor to the vertical flux. We suggest that photoautotrophic prokaryotes from the deep photic zone contribute significantly to deep‐water carbon in this environment, and possibly in other oxygen‐deficient waters with sulfidic photic zones. Furthermore, results suggest that seasonally variable terrestrial carbon and metal inputs also influence microbial diversity and function in similar systems.

     
    more » « less
  4. Summary

    Currently defined ecotypes in marine cyanobacteriaProchlorococcusandSynechococcuslikely contain subpopulations that themselves are ecologically distinct. We developed and applied high‐throughput sequencing for the 16S‐23S rRNA internally transcribed spacer (ITS) to examine ecotype and fine‐scale genotypic community dynamics for monthly surface water samples spanning 5 years at the San Pedro Ocean Time‐series site. Ecotype‐level structure displayed regular seasonal patterns including succession, consistent with strong forcing by seasonally varying abiotic parameters (e.g. temperature, nutrients, light). We identified tens to thousands of amplicon sequence variants (ASVs) within ecotypes, many of which exhibited distinct patterns over time, suggesting ecologically distinct populations within ecotypes. Community structure within some ecotypes exhibited regular, seasonal patterns, but not for others, indicating other more irregular processes such as phage interactions are important. Network analysis including T4‐like phage genotypic data revealed distinct viral variants correlated with different groups of cyanobacterial ASVs including time‐lagged predator–prey relationships. Variation partitioning analysis indicated that phage community structure more strongly explains cyanobacterial community structure at the ASV level than the abiotic environmental factors. These results support a hierarchical model whereby abiotic environmental factors more strongly shape niche partitioning at the broader ecotype level while phage interactions are more important in shaping community structure of fine‐scale variants within ecotypes.

     
    more » « less
  5. Abstract

    Diatoms are among the most abundant phytoplankton that inhabit coastal ecosystems, forming large blooms that fuel coastal food webs. Although diatoms are often large and morphologically distinct, many are small or morphologically cryptic making it difficult to understand the temporal dynamics of whole diatom communities and the environmental factors that drive them. Here, we investigated diatom diversity and its environmental correlates using 6 yr of monthly surface water samples from the Narragansett Bay Plankton Time Series to investigate the seasonal and annual variability of diatom species occurrence. High‐throughput amplicon sequencing of filtered biomass yielded 658 diatom amplicon sequence variants (ASVs), of which 347 were identified to species. Of the 49 diatom genera in the sequencing dataset, 33% had never been observed in the time series using microscopy (1959–2014). We observed a weak quadratic relationship between ASV richness and chlorophyll‐aconcentrations, suggesting that richness decreases during blooms. There was a significant difference in diatom ASV richness by season and we identified distinct assemblages associated with different seasons. These assemblages were remarkably synchronous, exhibiting a sinewave‐like pattern, over 6 yr with an annual periodicity that correlated significantly with seasonal changes in temperature, light, and dissolved inorganic nitrogen. The annual cycle of diatom assemblages suggests stability in a key component of the estuarine food web known to influence ecosystem resilience and function. Deviations from the annual cycle of recurrence could be used to distinguish between changes in community structure driven by annual fluctuations in the environment and those driven by climate‐change stressors.

     
    more » « less