Abstract Community dynamics are central in microbial ecology, yet we lack studies comparing diversity patterns among marine protists and prokaryotes over depth and multiple years. Here, we characterized microbes at the San-Pedro Ocean Time series (2005–2018), using SSU rRNA gene sequencing from two size fractions (0.2–1 and 1–80 μm), with a universal primer set that amplifies from both prokaryotes and eukaryotes, allowing direct comparisons of diversity patterns in a single set of analyses. The 16S + 18S rRNA gene composition in the small size fraction was mostly prokaryotic (>92%) as expected, but the large size fraction unexpectedly contained 46–93% prokaryotic 16S rRNA genes. Prokaryotes and protists showed opposite vertical diversity patterns; prokaryotic diversity peaked at mid-depth, protistan diversity at the surface. Temporal beta-diversity patterns indicated prokaryote communities were much more stable than protists. Although the prokaryotic communities changed monthly, the average community stayed remarkably steady over 14 years, showing high resilience. Additionally, particle-associated prokaryotes were more diverse than smaller free-living ones, especially at deeper depths, contributed unexpectedly by abundant and diverse SAR11 clade II. Eukaryotic diversity was strongly correlated with the diversity of particle-associated prokaryotes but not free-living ones, reflecting that physical associations result in the strongest interactions, including symbioses, parasitism, and decomposer relationships.
more »
« less
Effects of phytoplankton, viral communities, and warming on free-living and particle-associated marine prokaryotic community structure
Abstract Free-living and particle-associated marine prokaryotes have physiological, genomic, and phylogenetic differences, yet factors influencing their temporal dynamics remain poorly constrained. In this study, we quantify the entire microbial community composition monthly over several years, including viruses, prokaryotes, phytoplankton, and total protists, from the San-Pedro Ocean Time-series using ribosomal RNA sequencing and viral metagenomics. Canonical analyses show that in addition to physicochemical factors, the double-stranded DNA viral community is the strongest factor predicting free-living prokaryotes, explaining 28% of variability, whereas the phytoplankton (via chloroplast 16S rRNA) community is strongest with particle-associated prokaryotes, explaining 31% of variability. Unexpectedly, protist community explains little variability. Our findings suggest that biotic interactions are significant determinants of the temporal dynamics of prokaryotes, and the relative importance of specific interactions varies depending on lifestyles. Also, warming influenced the prokaryotic community, which largely remained oligotrophic summer-like throughout 2014–15, with cyanobacterial populations shifting from cold-water ecotypes to warm-water ecotypes.
more »
« less
- Award ID(s):
- 1737409
- PAR ID:
- 10387331
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Marine microorganisms are drivers of biogeochemical cycles in the world’s oceans, including oxygen minimum zones (OMZs). Using a metabarcoding survey of the 16S rRNA gene, we investigated prokaryotic communities, as well as their potential interactions with fungi, at the coastal, offshore, and peripheral OMZ of the eastern tropical North Pacific. Water samples were collected along a vertical oxygen gradient, and large volumes were filtered through three size fractions, 0.22, 2, and 22 µm. The changes in community composition along the oxygen gradient were driven by Planctomycetota, Bacteroidota, Verrucomicrobiota, and Gammaproteobacteria; most are known degraders of marine polysaccharides and usually associated with the large particle-associated (LPA) community. The relative abundance of Nitrososphaerota, Alphaproteobacteria, Actinomycetota, and Nitrospinota was high in free-living and small particle-associated (SPA) communities. Network analyses identified putative interactions between fungi and prokaryotes in the particle-associated fractions, which have been largely overlooked in the ocean. In the SPAnetwork analysis, fungal amplicon sequence variants (ASVs) had exclusively negative connections with SAR11 nodes. In the LPA network analysis, fungal ASVs displayed both negative and positive connections with Pseudomonadota, SAR324, and Thermoplasmatota. Our findings demonstrate the utility of three-stage size-fractioned filtration in providing novel insights into marine microbial ecology.more » « less
-
Abstract The coastal region of the Western Antarctic Peninsula is considered a biological hotspot with high levels of phytoplankton productivity and krill biomass. Recent in situ observations and particle modeling studies of Palmer Canyon, a deep bathymetric feature in the region, demonstrated the presence of a recirculating eddy that traps particles, retaining a distinct particle layer over the summer season. We applied metagenomic sequencing and Imaging Flow Cytobot (IFCB) analysis to characterize the microbial community in the particle layer. We sampled across the upper water column (< 200 m) along a transect to identify the locations of increased particle density, categorizing particles into either living cells or cellular detritus via IFCB. An indicator species analysis of community composition demonstrated the diatomCorethronand the bacteriaSulfitobacterwere significantly highly abundant in samples with high levels of living cells, while the mixotrophic dinoflagellateProrocentrum texanumand prokaryotes Methanomassiliicoccales andFluviicola taffensiswere significantly more abundant in samples with high detritus within the particle layer. From our metagenomic analysis, the significantly differentially abundant metabolic pathway genes in the particle layer of Palmer Canyon included pathways for anaerobic metabolism, such as methanogenesis and sulfate reduction. Overall, our results indicate that distinct microbial species and metabolic pathway genes are present in the retained particle layer of Palmer Canyon.more » « less
-
Abstract Zooplankton play an integral role as indicators of water quality in freshwater ecosystems, but exhibit substantial variability in their density and community composition over space and time. This variability in zooplankton community structure may be driven by multiple factors, including taxon-specific migration behavior in response to environmental conditions. Many studies have highlighted substantial variability in zooplankton communities across spatial and temporal scales, but the relative importance of space vs. time in structuring zooplankton community dynamics is less understood. In this study, we quantified spatial (a littoral vs. a pelagic site) and temporal (hours to years) variability in zooplankton community structure in a eutrophic reservoir in southwestern Virginia, USA. We found that zooplankton community structure was more variable among sampling dates over 3 years than among sites or hours of the day, which was associated with differences in water temperature, chlorophyll a, and nutrient concentrations. Additionally, we observed high variability in zooplankton migration behavior, though a slightly greater magnitude of DHM vs. DVM during each sampling date, likely due to changing environmental conditions. Ultimately, our work underscores the need to continually integrate spatial and temporal monitoring to understand patterns of zooplankton community structure and behavior in freshwater ecosystems.more » « less
-
Abstract Secondary metabolites play essential roles in ecological interactions and nutrient acquisition, and are of interest for their potential uses in medicine and biotechnology. Genome mining for biosynthetic gene clusters (BGCs) can be used for the discovery of new compounds. Here, we use metagenomics and metatranscriptomics to analyze BGCs in free-living and particle-associated microbial communities through the stratified water column of the Cariaco Basin, Venezuela. We recovered 565 bacterial and archaeal metagenome-assembled genomes (MAGs) and identified 1154 diverse BGCs. We show that differences in water redox potential and microbial lifestyle (particle-associated vs. free-living) are associated with variations in the predicted composition and production of secondary metabolites. Our results indicate that microbes, including understudied clades such as Planctomycetota, potentially produce a wide range of secondary metabolites in these anoxic/euxinic waters.more » « less
An official website of the United States government
