In contrast to the current paradigm of using microbial mono‐cultures in most biotechnological applications, increasing efforts are being directed towards engineering mixed‐species consortia to perform functions that are difficult to programme into individual strains. In this work, we developed a synthetic microbial consortium composed of two genetically engineered microbes, a cyanobacterium (
Engineered cyanobacterium
- Award ID(s):
- 2037887
- Publication Date:
- NSF-PAR ID:
- 10387352
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary Synechococcus elongatus PCC 7942) and a heterotrophic bacterium (Pseudomonas putida EM173). These microbial species specialize in the co‐culture: cyanobacteria fix CO2through photosynthetic metabolism and secrete sufficient carbohydrates to support the growth and active metabolism ofP. putida , which has been engineered to consume sucrose and to degrade the environmental pollutant 2,4‐dinitrotoluene (2,4‐DNT). By encapsulatingS. elongatus within a barium–alginate hydrogel, cyanobacterial cells were protected from the toxic effects of 2,4‐DNT, enhancing the performance of the co‐culture. The synthetic consortium was able to convert 2,4‐DNT with light and CO2as key inputs, and its catalytic performance was stable over time. Furthermore, cycling this synthetic consortium through low nitrogen medium promoted the sucrose‐dependent accumulation of polyhydroxyalkanoate, an added‐value biopolymer, in the engineeredP. putida strain. Altogether, the synthetic consortium displayed the capacity to remediate the industrial pollutant 2,4‐DNT while simultaneously synthesizing biopolymers using light and CO2as the primary inputs. -
Biofuels and other biologically manufactured sustainable goods are growing in popularity and demand. Carbohydrate feedstocks required for industrial fermentation processes have traditionally been supplied by plant biomass, but the large quantities required to produce replacement commodity products may prevent the long-term feasibility of this approach without alternative strategies to produce sugar feedstocks. Cyanobacteria are under consideration as potential candidates for sustainable production of carbohydrate feedstocks, with potentially lower land and water requirements relative to plants. Several cyanobacterial strains have been genetically engineered to export significant quantities of sugars, especially sucrose. Sucrose is not only naturally synthesized and accumulated by cyanobacteria as a compatible solute to tolerate high salt environments, but also an easily fermentable disaccharide used by many heterotrophic bacteria as a carbon source. In this review, we provide a comprehensive summary of the current knowledge of the endogenous cyanobacterial sucrose synthesis and degradation pathways. We also summarize genetic modifications that have been found to increase sucrose production and secretion. Finally, we consider the current state of synthetic microbial consortia that rely on sugar-secreting cyanobacterial strains, which are co-cultivated alongside heterotrophic microbes able to directly convert the sugars into higher-value compounds (e.g., polyhydroxybutyrates, 3-hydroxypropionic acid, or dyes) in a single-potmore »
-
Abstract The field of engineered living materials lies at the intersection of materials science and synthetic biology with the aim of developing materials that can sense and respond to the environment. In this study, we use 3D printing to fabricate a cyanobacterial biocomposite material capable of producing multiple functional outputs in response to an external chemical stimulus and demonstrate the advantages of utilizing additive manufacturing techniques in controlling the shape of the fabricated photosynthetic material. As an initial proof-of-concept, a synthetic riboswitch is used to regulate the expression of a yellow fluorescent protein reporter in
Synechococcus elongatus PCC 7942 within a hydrogel matrix. Subsequently, a strain ofS. elongatus is engineered to produce an oxidative laccase enzyme; when printed within a hydrogel matrix the responsive biomaterial can decolorize a common textile dye pollutant, indigo carmine, potentially serving as a tool in environmental bioremediation. Finally, cells are engineered for inducible cell death to eliminate their presence once their activity is no longer required, which is an important function for biocontainment and minimizing environmental impact. By integrating genetically engineered stimuli-responsive cyanobacteria in volumetric 3D-printed designs, we demonstrate programmable photosynthetic biocomposite materials capable of producing functional outputs including, but not limited to, bioremediation. -
Abstract Carboxysomes are protein‐based organelles essential for carbon fixation in cyanobacteria and proteobacteria. Previously, we showed that the cyanobacterial nucleoid is used to equally space out β‐carboxysomes across cell lengths by a two‐component system (McdAB) in the model cyanobacterium
Synechococcus elongatus PCC 7942. More recently, we found that McdAB systems are widespread among β‐cyanobacteria, which possess β‐carboxysomes, but are absent in α‐cyanobacteria, which possess structurally and phyletically distinct α‐carboxysomes. Cyanobacterial α‐carboxysomes are thought to have arisen in proteobacteria and then horizontally transferred into cyanobacteria, which suggests that α‐carboxysomes in proteobacteria may also lack the McdAB system. Here, using the model chemoautotrophic proteobacteriumHalothiobacillus neapolitanus , we show that a McdAB system distinct from that of β‐cyanobacteria operates to position α‐carboxysomes across cell lengths. We further show that this system is widespread among α‐carboxysome‐containing proteobacteria and that cyanobacteria likely inherited an α‐carboxysome operon from a proteobacterium lacking themcdAB locus. These results demonstrate that McdAB is a cross‐phylum two‐component system necessary for positioning both α‐ and β‐carboxysomes. The findings have further implications for understanding the positioning of other protein‐based bacterial organelles involved in diverse metabolic processes.Plain language summary Cyanobacteria are well known to fix atmospheric CO2into sugars using the enzyme Rubisco. Less appreciated are the carbon‐fixing abilitiesmore »
-
Abstract Background β-Caryophyllene is a plant terpenoid with therapeutic and biofuel properties. Production of terpenoids through microbial cells is a potentially sustainable alternative for production. Adaptive laboratory evolution is a complementary technique to metabolic engineering for strain improvement, if the product-of-interest is coupled with growth. Here we use a combination of pathway engineering and adaptive laboratory evolution to improve the production of β-caryophyllene, an extracellular product, by leveraging the antioxidant potential of the compound.
Results Using oxidative stress as selective pressure, we developed an adaptive laboratory evolution that worked to evolve an engineered β-caryophyllene producing yeast strain for improved production within a few generations. This strategy resulted in fourfold increase in production in isolated mutants. Further increasing the flux to β-caryophyllene in the best evolved mutant achieved a titer of 104.7 ± 6.2 mg/L product. Genomic analysis revealed a gain-of-function mutation in the a-factor exporter
STE6 was identified to be involved in significantly increased production, likely as a result of increased product export.Conclusion An optimized selection strategy based on oxidative stress was developed to improve the production of the extracellular product β-caryophyllene in an engineered yeast strain. Application of the selection strategy in adaptive laboratory evolution resulted in mutants with significantly increased production and identification of novelmore »