Context. After about 16 years since its first outburst, the transient neutron star low-mass X-ray binary XTE J1701−462 turned on again in September 2022, allowing for the first study of its X-ray polarimetric characteristics by a dedicated observing program with the Imaging X-ray Polarimeter Explorer (IXPE). Aims. Polarimetric studies of XTE J1701−462 have been expected to improve our understanding of accreting weakly magnetized neutron stars, in particular, the physics and the geometry of the hot inner regions close to the compact object. Methods. The IXPE data of two triggered observations were analyzed using time-resolved spectroscopic and polarimetric techniques, following the source along its Z -track of the color–color diagram. Results. During the first pointing on 2022 September 29, an average 2–8 keV polarization degree of (4.6 ± 0.4)% was measured, the highest value found up to now for this class of sources. Conversely, only a ∼0.6% average degree was obtained during the second pointing ten days later. Conclusions. The polarimetric signal appears to be strictly related to the higher energy blackbody component associated with the boundary layer (BL) emission and its reflection from the inner accretion disk, and it is as strong as 6.1% and 1.2% (> 95% significant) above 3–4 keV for the two measurements, respectively. The variable polarimetric signal is apparently related to the spectral characteristics of XTE J1701−462, which is the strongest when the source was in the horizontal branch of its Z -track and the weakest in the normal branch. These IXPE results provide new important observational constraints on the physical models and geometry of the Z -sources. Here, we discuss the possible reasons for the presence of strong and variable polarization among these sources. 
                        more » 
                        « less   
                    
                            
                            Radius Constraints from Reflection Modeling of Cygnus X-2 with NuSTAR and NICER
                        
                    
    
            Abstract We present a spectral analysis of NuSTAR and NICER observations of the luminous, persistently accreting neutron star (NS) low-mass X-ray binary Cygnus X-2. The data were divided into different branches that the source traces out on the Z-track of the X-ray color–color diagram; namely, the horizontal branch, the normal branch, and the vertex between the two. The X-ray continuum spectrum was modeled in two different ways that produced comparable quality fits. The spectra showed clear evidence of a reflection component in the form of a broadened Fe K line, as well as a lower-energy emission feature near 1 keV likely due to an ionized plasma located far from the innermost accretion disk. We account for the reflection spectrum with two independent models ( relxillns and rdblur*rfxconv ). The inferred inclination is in agreement with earlier estimates from optical observations of ellipsoidal lightcurve modeling ( relxillns : i = 67° ± 4°; rdblur*rfxconv : i = 60° ± 10°). The inner disk radius remains close to the NS ( R in ≤ 1.15 R ISCO ) regardless of the source position along the Z-track or how the 1 keV feature is modeled. Given the optically determined NS mass of 1.71 ± 0.21 M ⊙ , this corresponds to a conservative upper limit of R in ≤ 19.5 km for M = 1.92 M ⊙ or R in ≤ 15.3 km for M = 1.5 M ⊙ . We compare these radius constraints to those obtained from NS gravitational wave merger events and recent NICER pulsar lightcurve modeling measurements. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1801792
- PAR ID:
- 10387407
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 927
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 112
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present the results of a deep study of the neutron star (NS) population in the globular cluster M28 (NGC 6626), using the full 330 ks 2002–2015 ACIS data set from the Chandra X-ray Observatory and coordinated radio observations taken with the Green Bank Telescope (GBT) in 2015. We investigate the X-ray luminosity ( L X ), spectrum, and orbital modulation of the seven known compact binary millisecond pulsars in the cluster. We report two simultaneous detections of the redback PSR J1824−2452I (M28I) and its X-ray counterpart at L X = [8.3 ± 0.9] × 10 31 erg s −1 . We discover a double-peaked X-ray orbital flux modulation in M28I during its pulsar state, centered around pulsar inferior conjunction. We analyze the spectrum of the quiescent NS low-mass X-ray binary to constrain its mass and radius. Using both hydrogen and helium NS atmosphere models, we find an NS radius of R = 9.2–11.5 km and R = 13.0–17.5 km, respectively, for an NS mass of 1.4 M ⊙ (68% confidence ranges). We also search for long-term variability in the 46 brightest X-ray sources and report the discovery of six new variable low-luminosity X-ray sources in M28.more » « less
- 
            Abstract We present the tidal disruption event (TDE) AT2022lri, hosted in a nearby (≈144 Mpc) quiescent galaxy with a low-mass massive black hole (104M⊙<MBH< 106M⊙). AT2022lri belongs to the TDE-H+He subtype. More than 1 Ms of X-ray data were collected with NICER, Swift, and XMM-Newton from 187 to 672 days after peak. The X-ray luminosity gradually declined from 1.5 × 1044erg s−1to 1.5 × 1043erg s−1and remains much above the UV and optical luminosity, consistent with a super-Eddington accretion flow viewed face-on. Sporadic strong X-ray dips atop a long-term decline are observed, with a variability timescale of ≈0.5 hr–1 days and amplitude of ≈2–8. When fitted with simple continuum models, the X-ray spectrum is dominated by a thermal disk component with inner temperature going from ∼146 to ∼86 eV. However, there are residual features that peak around 1 keV, which, in some cases, cannot be reproduced by a single broad emission line. We analyzed a subset of time-resolved spectra with two physically motivated models describing a scenario either where ionized absorbers contribute extra absorption and emission lines or where disk reflection plays an important role. Both models provide good and statistically comparable fits, show that the X-ray dips are correlated with drops in the inner disk temperature, and require the existence of subrelativistic (0.1–0.3c) ionized outflows. We propose that the disk temperature fluctuation stems from episodic drops of the mass accretion rate triggered by magnetic instabilities or/and wobbling of the inner accretion disk along the black hole’s spin axis.more » « less
- 
            ABSTRACT Irradiation of the accretion disc causes reflection signatures in the observed X-ray spectrum, encoding important information about the disc structure and density. A Type I X-ray burst will strongly irradiate the accretion disc and alter its properties. Previous numerical simulations predicted the evolution of the accretion disc due to an X-ray burst. Here, we process time-averaged simulation data of six time intervals to track changes in the reflection spectrum from the burst onset to just past its peak. We divide the reflecting region of the disc within r ≲ 50 km into six to seven radial zones for every time interval and compute the reflection spectra for each zone. We integrate these reflection spectra to obtain a total reflection spectrum per time interval. The burst ionizes and heats the disc, which gradually weakens all emission lines. Compton scattering and bremsstrahlung rates increase in the disc during the burst rise, and the soft excess at <3 keV rises from ≈4 to ≈38 per cent of the total emission at the burst peak. A soft excess is expected to be ubiquitous in the reflection spectra of X-ray bursts. Structural disc changes such as inflation because of heating or drainage of the inner disc due to Poynting–Robertson drag affect the strength of the soft excess. Further studies on the dependence of the reflection spectrum characteristics to changes in the accretion disc during an X-ray burst may lead to probes of the disc geometry.more » « less
- 
            ABSTRACT In 2019 November, MAXI detected an X-ray outburst from the known Be X-ray binary system RX J0209.6−7427 located in the outer wing of the Small Magellanic Cloud. We followed the outburst of the system with NICER, which led to the discovery of X-ray pulsations with a period of 9.3 s. We analysed simultaneous X-ray data obtained with NuSTAR and NICER, allowing us to characterize the spectrum and provide an accurate estimate of its bolometric luminosity. During the outburst, the maximum broad-band X-ray luminosity of the system reached (1–2) × 1039 erg s−1, thus exceeding by about one order of magnitude the Eddington limit for a typical 1.4 M⊙ mass neutron star (NS). Monitoring observations with Fermi/GBM and NICER allowed us to study the spin evolution of the NS and compare it with standard accretion torque models. We found that the NS magnetic field should be of the order of 3 × 1012 G. We conclude that RX J0209.6−7427 exhibited one of the brightest outbursts observed from a Be X-ray binary pulsar in the Magellanic Clouds, reaching similar luminosity level to the 2016 outburst of SMC X-3. Despite the super-Eddington luminosity of RX J0209.6−7427, the NS appears to have only a moderate magnetic field strength.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    