skip to main content


Title: Radius Constraints from Reflection Modeling of Cygnus X-2 with NuSTAR and NICER
Abstract We present a spectral analysis of NuSTAR and NICER observations of the luminous, persistently accreting neutron star (NS) low-mass X-ray binary Cygnus X-2. The data were divided into different branches that the source traces out on the Z-track of the X-ray color–color diagram; namely, the horizontal branch, the normal branch, and the vertex between the two. The X-ray continuum spectrum was modeled in two different ways that produced comparable quality fits. The spectra showed clear evidence of a reflection component in the form of a broadened Fe K line, as well as a lower-energy emission feature near 1 keV likely due to an ionized plasma located far from the innermost accretion disk. We account for the reflection spectrum with two independent models ( relxillns and rdblur*rfxconv ). The inferred inclination is in agreement with earlier estimates from optical observations of ellipsoidal lightcurve modeling ( relxillns : i = 67° ± 4°; rdblur*rfxconv : i = 60° ± 10°). The inner disk radius remains close to the NS ( R in ≤ 1.15 R ISCO ) regardless of the source position along the Z-track or how the 1 keV feature is modeled. Given the optically determined NS mass of 1.71 ± 0.21 M ⊙ , this corresponds to a conservative upper limit of R in ≤ 19.5 km for M = 1.92 M ⊙ or R in ≤ 15.3 km for M = 1.5 M ⊙ . We compare these radius constraints to those obtained from NS gravitational wave merger events and recent NICER pulsar lightcurve modeling measurements.  more » « less
Award ID(s):
1801792
NSF-PAR ID:
10387407
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. After about 16 years since its first outburst, the transient neutron star low-mass X-ray binary XTE J1701−462 turned on again in September 2022, allowing for the first study of its X-ray polarimetric characteristics by a dedicated observing program with the Imaging X-ray Polarimeter Explorer (IXPE). Aims. Polarimetric studies of XTE J1701−462 have been expected to improve our understanding of accreting weakly magnetized neutron stars, in particular, the physics and the geometry of the hot inner regions close to the compact object. Methods. The IXPE data of two triggered observations were analyzed using time-resolved spectroscopic and polarimetric techniques, following the source along its Z -track of the color–color diagram. Results. During the first pointing on 2022 September 29, an average 2–8 keV polarization degree of (4.6 ± 0.4)% was measured, the highest value found up to now for this class of sources. Conversely, only a ∼0.6% average degree was obtained during the second pointing ten days later. Conclusions. The polarimetric signal appears to be strictly related to the higher energy blackbody component associated with the boundary layer (BL) emission and its reflection from the inner accretion disk, and it is as strong as 6.1% and 1.2% (> 95% significant) above 3–4 keV for the two measurements, respectively. The variable polarimetric signal is apparently related to the spectral characteristics of XTE J1701−462, which is the strongest when the source was in the horizontal branch of its Z -track and the weakest in the normal branch. These IXPE results provide new important observational constraints on the physical models and geometry of the Z -sources. Here, we discuss the possible reasons for the presence of strong and variable polarization among these sources. 
    more » « less
  2. Abstract We present the results of a deep study of the neutron star (NS) population in the globular cluster M28 (NGC 6626), using the full 330 ks 2002–2015 ACIS data set from the Chandra X-ray Observatory and coordinated radio observations taken with the Green Bank Telescope (GBT) in 2015. We investigate the X-ray luminosity ( L X ), spectrum, and orbital modulation of the seven known compact binary millisecond pulsars in the cluster. We report two simultaneous detections of the redback PSR J1824−2452I (M28I) and its X-ray counterpart at L X = [8.3 ± 0.9] × 10 31 erg s −1 . We discover a double-peaked X-ray orbital flux modulation in M28I during its pulsar state, centered around pulsar inferior conjunction. We analyze the spectrum of the quiescent NS low-mass X-ray binary to constrain its mass and radius. Using both hydrogen and helium NS atmosphere models, we find an NS radius of R = 9.2–11.5 km and R = 13.0–17.5 km, respectively, for an NS mass of 1.4 M ⊙ (68% confidence ranges). We also search for long-term variability in the 46 brightest X-ray sources and report the discovery of six new variable low-luminosity X-ray sources in M28. 
    more » « less
  3. ABSTRACT Irradiation of the accretion disc causes reflection signatures in the observed X-ray spectrum, encoding important information about the disc structure and density. A Type I X-ray burst will strongly irradiate the accretion disc and alter its properties. Previous numerical simulations predicted the evolution of the accretion disc due to an X-ray burst. Here, we process time-averaged simulation data of six time intervals to track changes in the reflection spectrum from the burst onset to just past its peak. We divide the reflecting region of the disc within r ≲ 50 km into six to seven radial zones for every time interval and compute the reflection spectra for each zone. We integrate these reflection spectra to obtain a total reflection spectrum per time interval. The burst ionizes and heats the disc, which gradually weakens all emission lines. Compton scattering and bremsstrahlung rates increase in the disc during the burst rise, and the soft excess at <3 keV rises from ≈4 to ≈38 per cent of the total emission at the burst peak. A soft excess is expected to be ubiquitous in the reflection spectra of X-ray bursts. Structural disc changes such as inflation because of heating or drainage of the inner disc due to Poynting–Robertson drag affect the strength of the soft excess. Further studies on the dependence of the reflection spectrum characteristics to changes in the accretion disc during an X-ray burst may lead to probes of the disc geometry. 
    more » « less
  4. We present optical photometry and spectroscopy of the Type II supernova ASASSN-14jb, together with Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) integral field observations of its host galaxy and a nebular-phase spectrum. This supernova, in the nearby galaxy ESO 467-G051 ( z  = 0.006), was discovered and followed-up by the all-sky automated survey for supernovae (ASAS-SN). We obtained well-sampled las cumbres network (LCOGTN) B V g r i and Swift w 2 m 1 w 1 u b v optical, near-UV/optical light curves, and several optical spectra in the early photospheric phases. The transient ASASSN-14jb exploded ∼2 kpc above the star-forming disk of ESO 467-G051, an edge-on disk galaxy. The large projected distance from the disk of the supernova position and the non-detection of any H II region in a 1.4 kpc radius in projection are in conflict with the standard environment of core-collapse supernova progenitors and suggests the possible scenario that the progenitor received a kick in a binary interaction. We present analysis of the optical light curves and spectra, from which we derived a distance of 25 ± 2 Mpc using state-of-the-art empirical methods for Type II SNe, physical properties of the SN explosion ( 56 Ni mass, explosion energy, and ejected mass), and properties of the progenitor; namely the progenitor radius, mass, and metallicity. Our analysis yields a 56 Ni mass of 0.0210  ±  0.0025  M ⊙ , an explosion energy of ≈0.25 × 10 51 ergs, and an ejected mass of ≈6  M ⊙ . We also constrained the progenitor radius to be R *  = 580  ±  28  R ⊙ which seems to be consistent with the sub-Solar metallicity of 0.3  ±  0.1  Z ⊙ derived from the supernova Fe II λ 5018 line. The nebular spectrum constrains strongly the progenitor mass to be in the range 10–12 M ⊙ . From the Spitzer data archive we detect ASASSN-14jb ≈330 days past explosion and we derived a total dust mass of 10 −4   M ⊙ from the 3.6 μ m and 4.5 μ m photometry. Using the F U V , N U V , B V g r i , K s , 3.6 μ m, and 4.5 μ m total magnitudes for the host galaxy, we fit stellar population synthesis models, which give an estimate of M *  ≈ 1 × 10 9   M ⊙ , an age of 3.2 Gyr, and a SFR ≈0.07  M ⊙ yr −1 . We also discuss the low oxygen abundance of the host galaxy derived from the MUSE data, having an average of 12 + log(O/H) = 8.27 +0.16 −0.20 using the O 3 N 2 diagnostic with strong line methods. We compared it with the supernova spectra, which is also consistent with a sub-Solar metallicity progenitor. Following recent observations of extraplanar H II regions in nearby edge-on galaxies, we derived the metallicity offset from the disk, being positive, but consistent with zero at 2 σ , suggesting enrichment from disk outflows. We finally discuss the possible scenarios for the unusual environment for ASASSN-14jb and conclude that either the in-situ star formation or runaway scenario would imply a low-mass progenitor, agreeing with our estimate from the supernova nebular spectrum. Regardless of the true origin of ASASSN-14jb, we show that the detailed study of the environment roughly agree with the stronger constraints from the observation of the transient. 
    more » « less
  5. Abstract We present the results from our 7 yr long broadband X-ray observing campaign of SN 2014C with Chandra and NuSTAR. These coordinated observations represent the first look at the evolution of a young extragalactic SN in the 0.3–80 keV energy range in the years after core collapse. We find that the spectroscopic metamorphosis of SN 2014C from an ordinary type Ib SN into an interacting SN with copious hydrogen emission is accompanied by luminous X-rays reaching L x ≈ 5.6 × 10 40 erg s −1 (0.3–100 keV) at ∼1000 days post-explosion and declining as L x ∝ t −1 afterwards. The broadband X-ray spectrum is of thermal origin and shows clear evidence for cooling after peak, with T ( t ) ≈ 20 keV ( t / t pk ) − 0.5 . Soft X-rays of sub-keV energy suffer from large photoelectric absorption originating from the local SN environment with NH int ( t ) ≈ 3 × 10 22 ( t / 400 days ) − 1.4 cm − 2 . We interpret these findings as the result of the interaction of the SN shock with a dense ( n ≈ 10 5 − 10 6 cm −3 ), H-rich disk-like circumstellar medium (CSM) with inner radius ∼2 × 10 16 cm and extending to ∼10 17 cm. Based on the declining NH int ( t ) and X-ray luminosity evolution, we infer a CSM mass of ∼(1.2 f –2.0 f ) M ⊙ , where f is the volume filling factor. We place SN 2014C in the context of 121 core-collapse SNe with evidence for strong shock interaction with a thick circumstellar medium. Finally, we highlight the challenges that the current mass-loss theories (including wave-driven mass loss, binary interaction, and line-driven winds) face when interpreting the wide dynamic ranges of CSM parameters inferred from observations. 
    more » « less