skip to main content


Title: Privacy Preserving Personalization for Video Facial Expression Recognition Using Federated Learning
The increased ubiquitousness of small smart devices, such as cell- phones, tablets, smart watches and laptops, has led to unique user data, which can be locally processed. The sensors (e.g., microphones and webcam) and improved hardware of the new devices have al- lowed running deep learning models that 20 years ago would have been exclusive to high-end expensive machines. In spite of this progress, state-of-the-art algorithms for facial expression recognition (FER) rely on architectures that cannot be implemented on these devices due to computational and memory constraints. Alternatives involving cloud-based solutions impose privacy barriers that prevent their adoption or user acceptance in wide range of applications. This paper proposes a lightweight model that can run in real-time for image facial expression recognition (IFER) and video facial expression recognition (VFER). The approach relies on a personalization mechanism locally implemented for each subject by fine-tuning a central VFER model with unlabeled videos from a target subject. We train the IFER model to generate pseudo labels and we select the videos with the highest confident predictions to be used for adaptation. The adaptation is performed by implementing a federated learning strategy where the weights of the local model are averaged and used by the central VFER model. We demonstrate that this approach can improve not only the performance on the edge device providing personalized models to the users, but also the central VFER model. We implement a federated learning strategy where the weights of the local models are averaged and used by the central VFER. Within corpus and cross-corpus evaluations on two emotional databases demonstrate that edge models adapted with our personalization strategy achieve up to 13.1% gains in F1-scores. Furthermore, the federated learning implementation improves the mean micro F1-score of the central VFER model by up to 3.4%. The proposed lightweight solution is ideal for interactive user interfaces that preserve the data of the users.  more » « less
Award ID(s):
1718944
NSF-PAR ID:
10387409
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ACM International Conference on Multimodal Interaction (ICMI 2022)
Page Range / eLocation ID:
495 to 503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents EARFace , a system that shows the feasibility of tracking facial landmarks for 3D facial reconstruction using in-ear acoustic sensors embedded within smart earphones. This enables a number of applications in the areas of facial expression tracking, user-interfaces, AR/VR applications, affective computing, accessibility, etc. While conventional vision-based solutions break down under poor lighting, occlusions, and also suffer from privacy concerns, earphone platforms are robust to ambient conditions, while being privacy-preserving. In contrast to prior work on earable platforms that perform outer-ear sensing for facial motion tracking, EARFace shows the feasibility of completely in-ear sensing with a natural earphone form-factor, thus enhancing the comfort levels of wearing. The core intuition exploited by EARFace is that the shape of the ear canal changes due to the movement of facial muscles during facial motion. EARFace tracks the changes in shape of the ear canal by measuring ultrasonic channel frequency response (CFR) of the inner ear, ultimately resulting in tracking of the facial motion. A transformer based machine learning (ML) model is designed to exploit spectral and temporal relationships in the ultrasonic CFR data to predict the facial landmarks of the user with an accuracy of 1.83 mm. Using these predicted landmarks, a 3D graphical model of the face that replicates the precise facial motion of the user is then reconstructed. Domain adaptation is further performed by adapting the weights of layers using a group-wise and differential learning rate. This decreases the training overhead in EARFace . The transformer based ML model runs on smartphone devices with a processing latency of 13 ms and an overall low power consumption profile. Finally, usability studies indicate higher levels of comforts of wearing EARFace ’s earphone platform in comparison with alternative form-factors. 
    more » « less
  2. Activity recognition using data collected with smart devices such as mobile and wearable sensors has become a critical component of many emerging applications ranging from behavioral medicine to gaming. However, an unprecedented increase in the diversity of smart devices in the internet-of-things era has limited the adoption of activity recognition models for use across different devices. This lack of cross-domain adaptation is particularly notable across sensors of different modalities where the mapping of the sensor data in the traditional feature level is highly challenging. To address this challenge, we propose ActiLabel, a combinatorial framework that learns structural similarities among the events that occur in a target domain and those of a source domain and identifies an optimal mapping between the two domains at their structural level. The structural similarities are captured through a graph model, referred to as the dependency graph, which abstracts details of activity patterns in low-level signal and feature space. The activity labels are then autonomously learned in the target domain by finding an optimal tiered mapping between the dependency graphs. We carry out an extensive set of experiments on three large datasets collected with wearable sensors involving human subjects. The results demonstrate the superiority of ActiLabel over state-of-the-art transfer learning and deep learning methods. In particular, ActiLabel outperforms such algorithms by average F1-scores of 36.3%, 32.7%, and 9.1% for cross-modality, cross-location, and cross-subject activity recognition, respectively. 
    more » « less
  3. Gibbons, P ; Pekhimenko, G ; De_Sa, C (Ed.)
    Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers training models locally and then aggregating their model updates on a trusted central server. Existing systems for FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization. They also may be inelastic in their resource management. This is particularly exacerbated when aggregating model updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers. We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates the individual, heavyweight message broker and replaces inefficient container-based sidecars with lightweight eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce the locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism, while minimizing aggregation time and resource consumption. Our preliminary experimental results show that LIFL achieves significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to existing serverful and serverless FL systems. 
    more » « less
  4. null (Ed.)
    Background The use of wearables facilitates data collection at a previously unobtainable scale, enabling the construction of complex predictive models with the potential to improve health. However, the highly personal nature of these data requires strong privacy protection against data breaches and the use of data in a way that users do not intend. One method to protect user privacy while taking advantage of sharing data across users is federated learning, a technique that allows a machine learning model to be trained using data from all users while only storing a user’s data on that user’s device. By keeping data on users’ devices, federated learning protects users’ private data from data leaks and breaches on the researcher’s central server and provides users with more control over how and when their data are used. However, there are few rigorous studies on the effectiveness of federated learning in the mobile health (mHealth) domain. Objective We review federated learning and assess whether it can be useful in the mHealth field, especially for addressing common mHealth challenges such as privacy concerns and user heterogeneity. The aims of this study are to describe federated learning in an mHealth context, apply a simulation of federated learning to an mHealth data set, and compare the performance of federated learning with the performance of other predictive models. Methods We applied a simulation of federated learning to predict the affective state of 15 subjects using physiological and motion data collected from a chest-worn device for approximately 36 minutes. We compared the results from this federated model with those from a centralized or server model and with the results from training individual models for each subject. Results In a 3-class classification problem using physiological and motion data to predict whether the subject was undertaking a neutral, amusing, or stressful task, the federated model achieved 92.8% accuracy on average, the server model achieved 93.2% accuracy on average, and the individual model achieved 90.2% accuracy on average. Conclusions Our findings support the potential for using federated learning in mHealth. The results showed that the federated model performed better than a model trained separately on each individual and nearly as well as the server model. As federated learning offers more privacy than a server model, it may be a valuable option for designing sensitive data collection methods. 
    more » « less
  5. Federated learning is a distributed framework according to which a model is trained over a set of devices, while keeping data localized. This framework faces several systems-oriented challenges which include (i) communication bottleneck since a large number of devices upload their local updates to a parameter server, and (ii) scalability as the federated network consists of millions of devices. Due to these systems challenges as well as issues related to statistical heterogeneity of data and privacy concerns, designing a provably efficient federated learning method is of significant importance yet it remains challenging. In this paper, we present FedPAQ, a communication-efficient Federated Learning method with Periodic Averaging and Quantization. FedPAQ relies on three key features:(1) periodic averaging where models are updated locally at devices and only periodically averaged at the server;(2) partial device participation where only a fraction of devices participate in each round of the training; and (3) quantized message-passing where the edge nodes quantize their updates before uploading to the parameter server. These features address the communications and scalability challenges in federated learning. We also show that FedPAQ achieves near-optimal theoretical guarantees for strongly convex and non-convex loss functions and empirically demonstrate the communication-computation tradeoff provided by our method. 
    more » « less