skip to main content

This content will become publicly available on November 7, 2023

Title: Privacy Preserving Personalization for Video Facial Expression Recognition Using Federated Learning
The increased ubiquitousness of small smart devices, such as cell- phones, tablets, smart watches and laptops, has led to unique user data, which can be locally processed. The sensors (e.g., microphones and webcam) and improved hardware of the new devices have al- lowed running deep learning models that 20 years ago would have been exclusive to high-end expensive machines. In spite of this progress, state-of-the-art algorithms for facial expression recognition (FER) rely on architectures that cannot be implemented on these devices due to computational and memory constraints. Alternatives involving cloud-based solutions impose privacy barriers that prevent their adoption or user acceptance in wide range of applications. This paper proposes a lightweight model that can run in real-time for image facial expression recognition (IFER) and video facial expression recognition (VFER). The approach relies on a personalization mechanism locally implemented for each subject by fine-tuning a central VFER model with unlabeled videos from a target subject. We train the IFER model to generate pseudo labels and we select the videos with the highest confident predictions to be used for adaptation. The adaptation is performed by implementing a federated learning strategy where the weights of the local model are averaged and used by more » the central VFER model. We demonstrate that this approach can improve not only the performance on the edge device providing personalized models to the users, but also the central VFER model. We implement a federated learning strategy where the weights of the local models are averaged and used by the central VFER. Within corpus and cross-corpus evaluations on two emotional databases demonstrate that edge models adapted with our personalization strategy achieve up to 13.1% gains in F1-scores. Furthermore, the federated learning implementation improves the mean micro F1-score of the central VFER model by up to 3.4%. The proposed lightweight solution is ideal for interactive user interfaces that preserve the data of the users. « less
Award ID(s):
Publication Date:
Journal Name:
ACM International Conference on Multimodal Interaction (ICMI 2022)
Page Range or eLocation-ID:
495 to 503
Sponsoring Org:
National Science Foundation
More Like this
  1. Artificial Intelligence (AI) is moving towards the edge. Training an AI model for edge computing on a centralized server increases latency, and the privacy of edge users is jeopardized due to private data transfer through a less secure communication channels. Additionally, existing high-power computing systems are battling with memory and data transfer bottlenecks between the processor and memory. Federated Learning (FL) is a collaborative AI learning paradigm for distributed local devices that operates without transferring local data. Local participant devices share the updated network parameters with the central server instead of sending the original data. The central server updates the global AI model and deploys the model to the local clients. As the local data resides only on the edge, these devices need to be protected from cyberattacks. The Federated Intrusion Detection System (FIDS) could be a viable system to protect edge devices as opposed to a centralized protection system. However, on-device training of the model in resource constrained devices may suffer from excessive power drain, in addition to memory and area overhead. In this work we present a memristor based system for AI training on edge devices. Memristor devices are ideal candidates for processing in memory, as their dynamicmore »resistance properties allow them to perform multiply-add operations in parallel in the analog domain with extreme efficiency. Alternatively, existing CMOS-based PIM systems are typically developed for edge inference based on pretrained weights, and are not equipped for on-chip training. We show the effectiveness of the system, where successful learning and recognition is achieved completely within edge devices. The classification accuracy of the memristor system shows negligible loss when compared a software implementation. To the best of our knowledge, this first demonstration of a memristor based federated learning system. We demonstrate the effectiveness of this system as an intrusion detection platform for edge devices, although given the flexibility of the learning algorithm, it could be used to enhance many types of on board leaning and classification applications.« less
  2. Background The use of wearables facilitates data collection at a previously unobtainable scale, enabling the construction of complex predictive models with the potential to improve health. However, the highly personal nature of these data requires strong privacy protection against data breaches and the use of data in a way that users do not intend. One method to protect user privacy while taking advantage of sharing data across users is federated learning, a technique that allows a machine learning model to be trained using data from all users while only storing a user’s data on that user’s device. By keeping data on users’ devices, federated learning protects users’ private data from data leaks and breaches on the researcher’s central server and provides users with more control over how and when their data are used. However, there are few rigorous studies on the effectiveness of federated learning in the mobile health (mHealth) domain. Objective We review federated learning and assess whether it can be useful in the mHealth field, especially for addressing common mHealth challenges such as privacy concerns and user heterogeneity. The aims of this study are to describe federated learning in an mHealth context, apply a simulation of federated learningmore »to an mHealth data set, and compare the performance of federated learning with the performance of other predictive models. Methods We applied a simulation of federated learning to predict the affective state of 15 subjects using physiological and motion data collected from a chest-worn device for approximately 36 minutes. We compared the results from this federated model with those from a centralized or server model and with the results from training individual models for each subject. Results In a 3-class classification problem using physiological and motion data to predict whether the subject was undertaking a neutral, amusing, or stressful task, the federated model achieved 92.8% accuracy on average, the server model achieved 93.2% accuracy on average, and the individual model achieved 90.2% accuracy on average. Conclusions Our findings support the potential for using federated learning in mHealth. The results showed that the federated model performed better than a model trained separately on each individual and nearly as well as the server model. As federated learning offers more privacy than a server model, it may be a valuable option for designing sensitive data collection methods.« less
  3. Machine Learning (ML) algorithms have shown quite promising applications in smart meter data analytics enabling intelligent energy management systems for the Advanced Metering Infrastructure (AMI). One of the major challenges in developing ML applications for the AMI is to preserve user privacy while allowing active end-users participation. This paper addresses this challenge and proposes Differential Privacy-enabled AMI with Federated Learning (DP-AMI-FL), framework for ML-based applications in the AMI. This framework provides two layers of privacy protection: first, it keeps the raw data of consumers hosting ML applications at edge devices (smart meters) with Federated Learning (FL), and second, it obfuscates the ML models using Differential Privacy (DP) to avoid privacy leakage threats on the models posed by various inference attacks. The framework is evaluated by analyzing its performance on a use case aimed to improve Short-Term Load Forecasting (STLF) for residential consumers having smart meters and home energy management systems. Extensive experiments demonstrate that the framework when used with Long Short-Term Memory (LSTM) recurrent neural network models, achieves high forecasting accuracy while preserving users data privacy.
  4. Raynal, Ann M. ; Ranney, Kenneth I. (Ed.)
    Most research in technologies for the Deaf community have focused on translation using either video or wearable devices. Sensor-augmented gloves have been reported to yield higher gesture recognition rates than camera-based systems; however, they cannot capture information expressed through head and body movement. Gloves are also intrusive and inhibit users in their pursuit of normal daily life, while cameras can raise concerns over privacy and are ineffective in the dark. In contrast, RF sensors are non-contact, non-invasive and do not reveal private information even if hacked. Although RF sensors are unable to measure facial expressions or hand shapes, which would be required for complete translation, this paper aims to exploit near real-time ASL recognition using RF sensors for the design of smart Deaf spaces. In this way, we hope to enable the Deaf community to benefit from advances in technologies that could generate tangible improvements in their quality of life. More specifically, this paper investigates near real-time implementation of machine learning and deep learning architectures for the purpose of sequential ASL signing recognition. We utilize a 60 GHz RF sensor which transmits a frequency modulation continuous wave (FMWC waveform). RF sensors can acquire a unique source of information that ismore »inaccessible to optical or wearable devices: namely, a visual representation of the kinematic patterns of motion via the micro-Doppler signature. Micro-Doppler refers to frequency modulations that appear about the central Doppler shift, which are caused by rotational or vibrational motions that deviate from principle translational motion. In prior work, we showed that fractal complexity computed from RF data could be used to discriminate signing from daily activities and that RF data could reveal linguistic properties, such as coarticulation. We have also shown that machine learning can be used to discriminate with 99% accuracy the signing of native Deaf ASL users from that of copysigning (or imitation signing) by hearing individuals. Therefore, imitation signing data is not effective for directly training deep models. But, adversarial learning can be used to transform imitation signing to resemble native signing, or, alternatively, physics-aware generative models can be used to synthesize ASL micro-Doppler signatures for training deep neural networks. With such approaches, we have achieved over 90% recognition accuracy of 20 ASL signs. In natural environments, however, near real-time implementations of classification algorithms are required, as well as an ability to process data streams in a continuous and sequential fashion. In this work, we focus on extensions of our prior work towards this aim, and compare the efficacy of various approaches for embedding deep neural networks (DNNs) on platforms such as a Raspberry Pi or Jetson board. We examine methods for optimizing the size and computational complexity of DNNs for embedded micro-Doppler analysis, methods for network compression, and their resulting sequential ASL recognition performance.« less
  5. Federated learning is a distributed framework according to which a model is trained over a set of devices, while keeping data localized. This framework faces several systems-oriented challenges which include (i) communication bottleneck since a large number of devices upload their local updates to a parameter server, and (ii) scalability as the federated network consists of millions of devices. Due to these systems challenges as well as issues related to statistical heterogeneity of data and privacy concerns, designing a provably efficient federated learning method is of significant importance yet it remains challenging. In this paper, we present FedPAQ, a communication-efficient Federated Learning method with Periodic Averaging and Quantization. FedPAQ relies on three key features:(1) periodic averaging where models are updated locally at devices and only periodically averaged at the server;(2) partial device participation where only a fraction of devices participate in each round of the training; and (3) quantized message-passing where the edge nodes quantize their updates before uploading to the parameter server. These features address the communications and scalability challenges in federated learning. We also show that FedPAQ achieves near-optimal theoretical guarantees for strongly convex and non-convex loss functions and empirically demonstrate the communication-computation tradeoff provided by our method.