- Award ID(s):
- 2010898
- PAR ID:
- 10387413
- Date Published:
- Journal Name:
- The American Biology Teacher
- Volume:
- 84
- Issue:
- 5
- ISSN:
- 0002-7685
- Page Range / eLocation ID:
- 312 to 314
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A central goal of the Learning Assistant (LA) model is to improve students’ learning of science through the transformation of instructor practices. There is minimal existing research on the impact of college physics instructor experiences on their effectiveness. To investigate the association between college introductory physics instructors’ experiences with and without LAs and student learning, we drew on data from the Learning About STEM Student Outcomes (LASSO) database. The LASSO database provided us with student-level data (concept inventory scores and demographic data) for 4,365 students and course-level data (instructor experience and course features) for the students’ 93 mechanics courses. We performed Hierarchical Multiple Imputation to impute missing data and Hierarchical Linear Modeling to nest students within courses when modeling the associations be- tween instructor experience and student learning. Our models predict that instructors’ effectiveness decreases as they gain experience teaching without LAs. However, LA supported environments appear to remediate this decline in effectiveness as instructor effectiveness is maintained while they gain experience teaching with LAs.more » « less
-
null (Ed.)Abstract Students are more likely to learn in college science, technology, engineering, and math (STEM) classrooms when instructors use teacher discourse moves (TDMs) that encourage student engagement and learning. However, although teaching practices are well studied, TDMs are not well understood in college STEM classrooms. In STEM courses at a minority-serving institution (MSI; n = 74), we used two classroom observation protocols to investigate teaching practices and TDMs across disciplines, instructor types, years of teaching experience, and class size. We found that instructors guide students in active learning activities, but they use authoritative discourse approaches. In addition, chemistry instructors presented more than biology instructors. Also, teaching faculty had relatively high dialogic, interactive discourse, and neither years of faculty teaching experience nor class size had an impact on teaching practices or TDMs. Our results have implications for targeted teaching professional development efforts across instructor and course characteristics to improve STEM education at MSIs.more » « less
-
In this paper, we compare the types of teaching feedback that graduate student instructors provide their peers in comparison to more senior faculty at a large research-oriented university. Additionally, we consider the challenges and benefits that graduate student instructors report concerning providing teaching feedback to a peer. Our results reveal that graduate student instructors and faculty contribute distinct perspectives on teacher growth and together can form a strong support system for first-time graduate student instructors. Additionally, while observing a peer does pose real challenges, we found that graduate student instructors develop strategies to overcome these and report more benefits than difficulties.more » « less
-
null (Ed.)The COVID-19 pandemic forced the move from a traditional face-to-face classroom to a remote learning model. The success of the remote learning model is contingent upon several factors including appropriate learning materials. Instructors who were entrenched in the face-to-face teaching method had to make rapid adjustments to deliver learning materials and to engage students remotely. In contrast, instructors who had been using techniques to prepare students virtually before class time meeting were better positioned to pivot to the remote learning approach. The techniques and the materials developed by faculty from mathematics and aerospace engineering at an HBCU for effectively engaging students which include virtual pre class preparation were adapted for the remote learning method during this pandemic. These techniques and materials were made available to faculty to assist their move from face-to-face to remote learning. The approach is shared in this paper. Math and aerospace engineering students’ satisfaction with the approach was measured and the results are also included in this paper.more » « less
-
Abstract Background STEM instructors who leverage student thinking can positively influence student outcomes and build their own teaching expertise. Leveraging student thinking involves using the substance of student thinking to inform instruction. The ways in which instructors leverage student thinking in undergraduate STEM contexts, and what enables them to do so effectively, remains largely unexplored. We investigated how undergraduate STEM faculty leverage student thinking in their teaching, focusing on faculty who engage students in work during class.
Results From analyzing interviews and video of a class lesson for eight undergraduate STEM instructors, we identified a group of instructors who exhibited high levels of leveraging student thinking (high-leveragers) and a group of instructors who exhibited low levels of leveraging student thinking (low-leveragers). High-leveragers behaved as if student thinking was central to their instruction. We saw this in how they accessed student thinking, worked to interpret it, and responded in the moment and after class. High-leveragers spent about twice as much class time getting access to detailed information about student thinking compared to low-leveragers. High-leveragers then altered instructional plans from lesson to lesson and during a lesson based on their interpretation of student thinking. Critically, high-leveragers also drew on much more extensive knowledge of student thinking, a component of pedagogical content knowledge, than did low-leveragers. High-leveragers used knowledge of student thinking to create access to more substantive student thinking, shape real-time interpretations, and inform how and when to respond. In contrast, low-leveragers accessed student thinking less frequently, interpreted student thinking superficially or not at all, and never discussed adjusting the content or problems for the following lesson.
Conclusions This study revealed that not all undergraduate STEM instructors who actively engage students in work during class are also leveraging student thinking. In other words, not all student-centered instruction is student-thinking-centered instruction. We discuss possible explanations for why some STEM instructors are leveraging student thinking and others are not. In order to realize the benefits of student-centered instruction for undergraduates, we may need to support undergraduate STEM instructors in learning how to learn from their teaching experiences by leveraging student thinking.